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We give a complete proposal showing how
to detect the non-classical nature of photonic
states with naked eyes as detectors. The en-
abling technology is a sub-Poissonian photonic
state that is obtained from single photons, dis-
placement operations in phase space and basic
non-photon-number-resolving detectors. We
present a detailed statistical analysis of our
proposal including imperfect photon creation
and detection and a realistic model of the hu-
man eye. We conclude that a few tens of hours
are sufficient to certify non-classical light with
the human eye with a p-value of 10%.

1 Introduction & motivations
Efforts have been recently devoted to the realization
of quantum experiments with the human eye. This
endeavor is however challenging. The proposal of Ref.
[1] which uses many entangled photon pairs to realize
a Bell test with the eye does not allow one to violate a
Bell inequality with a realistic model of the eye. Refs.
[2, 3] which propose to amplify entanglement of a pho-
ton pair through a phase covariant cloning, can lead
to entanglement detection with eye-based detectors
provided that strong assumptions are made on the
source. While no assumption is needed on the func-
tioning of the eye, it is necessary to assume that the
source produces true single photons. From a practical
point of view, phase-covariant cloning is also difficult
to implement. In particular, cloning is inherently mul-
timode when implemented with a non-linear crystal as
suggested in Ref. [2]. The undesired modes can be fil-
tered out but at the price of introducing substantial
loss. Ref. [4] provides a technically simpler solution
by using displacement operations on single-photon en-
tanglement. This proposal allows one to detect en-
tanglement with the eye without assumption on the
source but needs a precise description of the visual
system. Indeed, the entanglement witness proposed
in Ref. [4] relies on a well-defined model of the eye
thus requiring a detailed characterization of the hu-
man eye. Importantly, in both Ref. [2] and [4], entan-
glement is detected before the amplification. That is,

these proposals allow one to conclude that few-photon
entanglement can be detected by the human eye up-
graded by phase-covariant cloning and displacement
operations respectively. The question we address in
this manuscript is how the quantum nature of light
can be directly detected with the eye.

The motivations are twofold. First, our proposal is
a fascinating attempt to get closer to the quantum
world. Indeed, it is conceptually very different
from standard quantum optics experiments where
measurements are done by photon detectors and
the sole role of experimentalists in the measurement
process is to analyse the experimental data stored on
a computer. The envisioned experiment is unitary
until the eye, so if a collapse happens it does not
happen before the eye. Second, such an experiment
interfaces quantum light and biological systems.
Inspired by the great success of quantum optics in
revolutionizing communications [5], metrology [6],
sensing [7] or computing [8], this experiment of a
new kind may flourish with important applications
for biomedical research.

As stated before, the proposal of Ref. [4] is
appealing as it uses simple ingredients, namely
single-photon entanglement and displacement op-
erations. In this manuscript, we derive a witness
for non-classical states and we show how the same
ingredients allow one to reveal the non-classical
nature of a superposition state with the eye. Our
witness needs no assumption on the photon number
produced by the source or on the precise modelling of
the eye. It simply relies on the assumption that the
probability to detect light increases with the photon
number. While entanglement detection requires
measurements in different bases, the experiment
that we propose is simpler as it uses displacement
operations with fixed amplitudes and phases. It does
not need interferometric stabilization of optical paths
and is very robust against loss. We show, through a
detailed feasibility study including a realistic model
of the human eye with a reasonable recovery time
as well as imperfect photon creation and detection,
that a few tens of hours are sufficient for our witness
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to conclude about non-classicality with a p-value of
10%. Our results point towards a concrete proposal
for implementing the first experiment where the
quantum nature of light is revealed directly with the
human eye.

2 Witnessing non-classicality with
rudimentary detectors
Coherent states |α〉 of a harmonic oscillator (or a
mode of the electromagnetic field) saturate the un-
certainty relations for any pair of quadratures as well
as for amplitude and phase [9]. In addition, they are
eigenstates of the positive frequency part of the quan-
tized field and vector potential operators [10]. For
these reasons, the set of coherent states is thought as
the most classical subset of all possible pure states of
light. In this context, a state which can be expressed
as a mixture of coherent states |α〉

ρclass =
∫

d2α p(α)|α〉〈α|, with p(α) ≥ 0 (1)

is considered classical, and any state which cannot
be decomposed in this way is then non-classical. It is
easy to see that the convex combination of coherent
states in Eq. (1) satisfies 〈N̂

2〉−〈N̂〉
〈N̂〉2 ≥ 1 with N̂ the

number operator [11]. Hence, a photon-counting
detector can be used to witness the non-classical
nature of a light state. If the photon-counting
results reveal 〈N̂

2〉−〈N̂〉
〈N̂〉2 < 1, we can indeed conclude

that the measured state is non-classical. Note that
all non-classical states lead to entanglement when
combined with the vacuum on a beamsplitter [12].
The link with entanglement helps clarifying the
notion of non-classical states.

Moreover for few photon states, 〈N̂2〉− 〈N̂〉 can be
approximated by ∼ 2〈|2〉〈2|〉 and 〈N̂〉2 by ∼ 〈|1〉〈1|〉2.
Hence, one can use a 50/50 beamsplitter and two
non-photon-number-resolving detectors to witness
the non-classical nature of few photon states by
checking that the two-fold coincidences (∼ 〈|2〉〈2|〉/2)
are smaller than the product of singles (∼ 〈|1〉〈1|〉2/4),
cf. [13] for a proper derivation. Can one still use this
criterion in presence of other kinds of detectors? We
now address the question of the conditions required
to witness the non-classical nature of a light source
with a 50/50 beamsplitter and two detectors.

Let us consider an arbitrary detector with a binary
outcome, one corresponding to click, the other one
to no-click. We label ps(α) the probability to get a
click when a coherent state |α〉 impinges on such a
detector. In a scenario where two of these detectors
are placed after a 50/50 beamsplitter, the probabil-
ity to get a twofold coincidence with any classical

state is given by pc(ρclass) =
∫

d2α p(α)ps(α/
√

2)2

whereas the probability of a single detection is given
by ps(ρclass) =

∫
d2α p(α)ps(α/

√
2). This sim-

ply comes from the fact that a coherent state splits
into two similar coherent states on a beamsplitter
|α〉 BS−→ | α√2 〉t ⊗ |

α√
2 〉r. The Cauchy-Schwarz in-

equality
∫
f(µ)2dµ

∫
g(µ)2dµ ≥

(∫
f(µ)g(µ)dµ

)2 for
f = 1, g = ps(α/

√
2) and dµ = p(α)d2α then implies

pc(ρclass)
ps(ρclass)2 ≥ 1. (2)

In other words, any detector can be used to witness
non-classicality as long as one has two copies of
this particular detector. It suffices to place these
detectors after a 50/50 beamsplitter and to record
the number of singles and coincidences. If the ratio
between the probability of having a coincidence and
the square of the probability of singles is smaller than
one, we can safely conclude that the measured state
is non-classical. We show in the appendix A that
the ratio between the coincidence and the product of
singles is a witness for non-classicality even if the two
detectors after the beamsplitter are not identical and
the beamsplitter is not balanced, as long as ps(α) is
an increasing function of the photon number |α|2 for
both detectors. These results are used in the next
section to show how to detect non-classical states
with the human eye.

3 Witnessing non-classicality with the
human eye
Let us start this section by recalling how to model
the response of the human eye to weak light stimuli.
In a landmark experiment Hecht, Shlaer and Pirenne
tested the capability of the human eye to detect light
pulses containing only a few photons [14], see also
[15]. In their experiment, an observer was presented
with a series of multimode thermal light pulses and
asked to report when the light is seen. Similar results
have been obtained much more recently with coherent
light pulses (monomode light also having a Poissonian
photon-number distribution) [16], thus indicating
that the response of the eye does not depend on the
number of modes. Interestingly, the results of both
experiments are very well reproduced by a model in
which coherent states are sent onto a threshold detec-
tor preceded by loss. In particular, the experimental
data of Ref. [14] is compatible with a threshold at
θ = 7 photons and an efficiency of ηe = 8%, see Fig.
1 in Ref. [4]. Note that these numbers depend on the
psychophysics, i.e. the dark adaptation, the choice of
dead-times and methods for eliciting responses from
the observer about his experience of light stimuli. In
particular, the recent results reported in Ref. [16]
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Figure 1: Result of an auto-correlation (g(2)(0)) mea-
surement in which two eyes are placed after a 50/50
beamsplitter. The ratio between the probability to
see light with both eyes and the square of the proba-
bility to see light with one eye is recorded for an input
state D(α)(|0〉+ |1〉)/

√
2, considering real α. We here

show this ratio as a function of α. Ratios smaller than
one (red dashed line) witness the non-classical nature
of the state.

are compatible with lower thresholds and several
references [17, 18] suggest higher efficiencies. In the
remainder of the paper, we keep the model of the eye
with parameters associated to the seminal work of
Hecht and co-workers (θ = 7 and ηe = 8%). We show
that these parameters are conservative, i.e. higher
efficiencies or lower thresholds reduce the number of
experimental runs that are needed to conclude about
non-classicality.

Given the witness for non-classical states presented
in the previous section, we envision an experiment
where two eyes are placed after a beamsplitter. The
event “click” corresponds to the case where the
observer sees light, “no-click” where no light is seen.
The experiment is repeated several times to access
the probability to see light with one of the two eyes
as well as the joint probability to see light with
both eyes. The ratio between the coincidences and
the product of singles is then used to reveal non-
classicality. This ratio is labelled g(2)(0) in analogy
to the standard autocorrelation measurement.

To make a complete proposal, we still need to
find a quantum state for which the non-classical
nature can be revealed in such a setup. Note that
sub-Poissonian states, i.e. states for which the
distribution in photon-number space is narrower
than the one of a coherent state with the same
mean photon number, are natural candidates for
achieving g(2)(0) < 1 with threshold detectors such
as the human eye. This is because there is a regime
where, for the same probability of singles, the narrow
photon-number distribution of a sub-Poissonian state
yields a lower coincidence probability than the one of
the corresponding coherent state. As an illustration,
consider an ideal threshold detector and a Fock

state that has enough photons to eventually make
one of the detectors click, but not enough to give a
coincidence.
While Fock states with large photon numbers are
challenging to produce, a sub-Poissonian state can
be obtained in practice by displacing a superpo-
sition of vacuum and single-photon Fock state in
phase space. The resulting state D(α)

∣∣∣ 1√
2 (0 + 1)

〉
,

where D(α) stands for a displacement operation,
indeed has a variance in photon-number space that is
1+8|α|2−4Re(α)2

2+4|α|2+4Re(α) times that of a coherent state with the
same mean photon number. This ratio admits values
that are below one, and interestingly, for a given
strength of the displacement |α|2, it is minimal and
always inferior to unity when α is real. Consequently,
from here on we will only consider real displacements.

Fig. 1 shows the value of g(2)(0) obtained when
sending such a state on a 50/50 beamsplitter followed
by two eyes as a function of the amplitude of α. We
see that the non-classical nature of D(α)

∣∣∣ 1√
2 (0 + 1)

〉
can be detected with the human eye as long α ≤ 13.3.
For larger α, the two eyes always see light and the
ratio between coincidences and singles tends to one.
However, in the range of displacement values α ∼ 10,
one can expect non-negligible occurrence frequency
for the event “seen” for both eyes. These encouraging
estimations compel us to make a detailed feasibility
study, i.e. to propose a practical way to create a
single photon superposed with vacuum, to account
for imperfect generation efficiency, channel loss, lim-
ited detection efficiencies and to conclude about the
statistics that is required to witness non-classicality
with the human eye.

4 Proposed experiment
The experiment we envision is shown in Fig. 2.
A source based on spontaneous parametric down-
conversion is used to create photon pairs, the
detection (on detector Dh in Fig. 2) of one photon
from a given pair serving to herald the presence of its
twin. The latter is then sent into a 50/50 beamsplit-
ter to create path-entanglement, i.e. entanglement
of the form (|0〉t |1〉r − |1〉t |0〉r)/

√
2 between the

transmitted and reflected modes of the beamsplitter
which share a single photon. The reflected mode is
subsequently detected with a non-photon-number-
resolving detector (detector Dg in Fig. 2) preceded
by a displacement in phase space D(β). With
the appropriate displacement amplitude, such a
measurement performs a pretty good measurement
along the x direction of the Bloch sphere having |0〉
and |1〉 as its north and south pole respectively [19].
In other words, with the appropriate displacement, a
detection click projects the transmitted mode into a
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Figure 2: Schematic representation of the experiment
envisioned to witness the non-classical nature of a su-
perposition state D(α)(|0〉t+|1〉t)/

√
2 with the human

eye. The superposition (|0〉t + |1〉t)/
√

2 is prepared
by first sending a single photon into an unbalanced
beamsplitter and by subsequent detection of the re-
flected mode with a photon detector preceded by a
displacement operation. For displacements with a
small enough amplitude, this projects the transmitted
mode into a state close to the desired superposition.
This superposition state is then displaced to produce
the non-classical state of interest. A 50/50 beamsplit-
ter and two eyes are then used to analyse this state
with a measurement analogous to an auto-correlation
measurement.

state close to (|0〉t + |1〉t)/
√

2. Such a state is then
displaced in phase space, split using a 50/50 beam-
splitter and sent to human observers. The single and
coincidence events are recorded and the experiment
is repeated until the observers can conclude about
the non-classical nature of the superposition state
with enough statistical confidence. As it is not clear
what psychophysical test would allow to distinguish
a dim flash of light occurring in the left vs. the
right eye and a temporal discrimination with a single
observer would require unrealistic delays, we envision
an experiment with two observers, each reporting
on whether he/she sees light each time a detection
click is obtained on Dg. We show below how to get a
triggering rate compatible with a synchronization of
the two observers’ answers.

Note that in this setup, one can tune the transmis-
sion coefficient of the first beamsplitter along with
the displacement amplitude β, effectively modifying
the input state for the autocorrelation measure-
ment. Finally, we observed that the closest state to
D(α)

∣∣∣ 1√
2 (0 + 1)

〉
is obtained by choosing a highly

unbalanced beamsplitter with transmission t ∼ 1 and
using a displacement D(β) with almost zero ampli-
tude. In this case, we get a very partially entangled
state and maximum coherence of the conditional
state (|0〉t + |1〉t)/

√
2 is restored by measuring the

reflected mode almost along the z direction and
post-selecting the case where a click is obtained. This
favors larger fidelities of the conditional state because
the measurement noise is reduced when it gets closer

to the z direction [19]. However, the probability to
get a click drops when the transmission of the beam-
splitter increases. There is thus a trade-off between
the “quality” of the states produced by the source
and the rate at which they are produced. The pa-
rameters β and t have to be optimized in view of the
statistics needed to witness non-classicality, cf. below.

Several requirements need to be satisfied for
implementing the experiment proposed in Fig. 2. (i)
The efficient generation of pure, indistinguishable
and narrowband single photons is the first one. A
straightforward way to create photons with these
properties from spontaneous parametric down-
conversion is to combine short, Fourier-limited pump
pulses with a narrow-band filtering of the heralding
photons. This results in Fourier-limited heralded
photons with the spectrum of the pump [20]. To
ensure a high coupling efficiency of these heralded
photons into an optical fiber, a plane wave pump
is required and the heralding photons need to be
spatially filtered with a single mode fiber before
being detected. This projects the heralded photons
into the fundamental spatial mode of the fiber,
and hence allows one to reach very high coupling
efficiencies [21]. (ii) The photons need to have a color
that can be seen by the human eye. This can be
fulfilled with a pump at 405nm down-converted into
non-degenerate photon pairs at 1536 and 550nm.
The advantage is threefold. 550nm is very well
suited for the human eye and the photons in the
telecom band can be efficiently filtered both spatially
and in frequency. The telecom mode can also be
seeded with a stable cw telecom laser to generate the
coherent states that are needed for the displacement
operations, cf. below. (iii) The click rate on the
detector Dg in Fig. 2 needs to be adapted to the
timescale of the response of the human eye as it
sets a start for the observers. This can be done by
reducing the repetition rate of the pump laser with
an optical chopper. The heralding rate on Dh and
thus on Dg, can then be easily set by tuning the laser
intensity and the duty cycle of the optical chopper,
c.f. below. (iv) To implement the displacement
operations, we need an unbalanced beamsplitter and
coherent pulses with Poissonian photon distribution
that are indistinguishable from the photons at 550
nm in all degrees of freedom. This can be done using
difference frequency generation. More precisely, we
propose to use a second non-linear crystal, identical
to the first one and pumped by the same laser but
with a narrow seed of the telecom mode. In contrast
to spontaneous parametric down-conversion, the
seed results in coherent states at 550 nm with the
characteristics of the pump laser, i.e. Fourier-limited
coherent states with the spectrum of the pump [22].
Since the coherent states created in this way and
the single photons at 550 nm are generated from the
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Figure 3: Schematic of the setup to produce superpo-
sition states close to D(α)(|0〉t + |1〉t)/

√
2 and to de-

tect their quantum nature with the human eye. Star:
laser, χ2 : non-linear crystal, DM: dichroic mirror, f:
filters, WP: wave-plates, PBS: polarizing beamsplit-
ter, BS: beamsplitter. See text for details.

same pump, their indistinguishability is insensitive
to the pump fluctuations. Note also that with a
ps pump, the effect of frequency fluctuations of the
telecom laser is negligible. The slow fluctuations
in intensity of the latter can be recorded and taken
into account once the measurements are done. In
the worst case, they can be monitored and cor-
rected with a feedback loop. Albeit with different
wavelengths, the proposed technique has already
been used successfully in various experiments [22, 23].

Concretely, we envision an experiment where a
Ti-Sa laser is doubled to create 2 − 3ps pulses at
405nm with a repetition rate of 80 MHz, see Fig.
3. These pulses are then used to pump two crystals
in order to be down-converted to 1536 and 550nm
respectively. The first crystal will be used to create
pure single photons at 550nm by picking up a single
spatial and frequency mode of the photons at 1536nm
with a monomode fiber and a narrowband spectral
filter. Coherent states that are indistinguishable from
the photons at 550 nm are generated by seeding the
second crystal with a pulsed telecom laser. Let us
emphasize that the critical point of this experimental
implementation is the noise. In standard experiment,
the noise is filtered out by analyzing the detection
times to discriminate between true and false events.
As the response of the human eye is not fast enough
for such a temporal discrimination, we need to be sure
that a limited number of undesired photons can reach
the eye of the observer. First, we propose to decrease
the repetition rate of the pump laser to 1.6 MHz
using an optical chopper with a duty cycle of 0.02.
By tuning the pump intensity to get a pair emission
probability of 0.8 × 10−3 and considering a global
detection efficiency of 0.08 for Dh (i.e. a coupling
efficiency of 0.8, a filter transmission of 0.4 and a raw
detection efficiency of 0.25), we get a heralding rate
on Dh of ∼ 100 Hz. Moreover, we consider a coupling
efficiency of the heralded photon at 550nm of ηc = 0.8
in agreement with the experimental results reported

e.g. in Ref. [21]. The detection efficiency of the
visible detector in the upper arm of Fig. 2 is assumed
to be ηd = 0.5 which is realistic even when including
the transmission loss from the source to the detector
and the inefficiencies of linear optical elements. We
neglect mismatches in the indistinguishability of
the photons and coherent states at 550nm, which
is well justified given the results of Ref. [22] where
the visibility of the Hong-Ou-Mandel interference
between a single photon and a coherent state created
via identical crystals as described before was only
limited by the statistics of the coherent state. We
set the transmission t = 98% which, together with
the value of the displacement β ∼ 0.08 chosen to
minimize the total number of experimental runs (cf.
below), ensures that 1% of the heralds on Dh lead
to a click on Dg. Meanwhile the conditional state
generated on the lower arm shows a near maximal
95% fidelity with respect to D(α) | 1√

2 (0 + 1)〉.

The dominant noise in this scenario comes from the
coherent states that are used for the displacement op-
erations. We propose to trigger the seed that is used
to generate these coherent states on detections in Dh.
In this case, the noise is ∼ 100 times greater than the
signal. To reduce it further, a pulse picker is placed
in front of the eyes which is triggered by detections
on Dg. Considering an extinction ratio of 1:2000, we
get a signal-to-noise ratio of ∼ 20, which should be
more than enough to perform the proposed measure-
ment. Note that the pulse picker also filters out other
sources of noise, including the spontaneous emission
of the crystal used to generate single photons at 550
nm (that is negligible with respect to the noise due to
coherent states). Note also that∼ 100ns are needed to
trigger the pulse picker on detections by Dg, which re-
quires a delay line of 20m of fiber, representing negligi-
ble loss for typical attenuation < 12dB/km at 550nm.

5 Statistics
To conclude the feasibility analysis of the proposed
experiment, we now turn to the question of statistics,
and determine the number of runs needed to exclude
the possibility that the observed finite statistics are
the result of measurements on a classical state. This
is a particularly relevant question in our case, as the
repetition rates that can be attained with the human
eye are much lower than the slowest commercial
detectors. The statistical study that we describe
in this section aims at estimating the time-resource
that an experimenter would have to allocate to such
an experiment for the efficiencies discussed in the
previous section, depending on the accuracy he wants
to achieve.

The statistical issue is essentially an estimation of
the odds of having g(2)(0) < 1 from a classical photon-
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number distribution. To answer this we consider the
multinomial joint probability

P (Ns, Nc) =pNc
c (ps − pc)Ns−Nc(1− ps)N−Ns

×
(

N

Nc, Ns −Nc, N −Ns

) (3)

of obtaining Ns singles and Nc coincidences out of
N experimental runs, from the knowledge of the
single and coincidence probabilities in one round
{ps, pc}. Note that we assume here that the single
probability on each eye is identical, and that the
runs are independently and identically distributed
(i.i.d.). Further note that the form of the above
distribution, whose natural variables are Nc and
Ns − Nc, stresses the dependence of the events
“single” and “coincidence”. Indeed we have defined
a single in one arm regardless of the situation in
the other arm, hence a coincidence is counted as a
single as well. The outcome “single only” has an
occurrence probability ps − pc as can be seen in the
multinomial expression. Both the quantum scenario
presented before, with {ps(ρq), pc(ρq)} depending on
the non-classical state ρq, and the classical one with
{ps(ρc), pc(ρc)} such that pc(ρc) ≥ p2

s(ρc) give rise to
a probability distribution that we label respectively
by P q(Ns, Nc) and P c(Ns, Nc).

We then choose an estimator χ which is a func-
tion of the total number of singles Ns and coinci-
dences Nc observed in N rounds of the experiment,
cf. below. For a given N , this estimator takes the
value χ(Ns, Nc) with probabilities P q(Ns, Nc) and
P c(Ns, Nc) in the quantum and classical scenarios.
The probability of observing a value of χ smaller than
a given value χ0 in the quantum (classical) case after
N rounds is thus given by

P (χq/c ≤ χ0) =
∑

Ns,Nc|χ(Ns,Nc)≤χ0

P q/c(Ns, Nc). (4)

On one side, the quantum distribution tells us what is
the probability with which we can expect to observe
(in a quantum experiment) a value of χ smaller or
equal to some value χ0. We write this probability

Pstop = P (χq ≤ χ0). (5)

On the other side, the classical distribution allows us
to define the p-value ε associated with the rejection
of the null hypothesis “the state is classical” once a
value χ0 is observed. This p-value is given by

ε = max
pc≥p2

s

P (χc ≤ χ0) (6)

where the maximum is taken over all classical scenar-
ios satisfying pc(ρc) ≥ p2

s(ρc). Alternatively, we can
read the relation (6) as a definition of the critical value
of the estimator χ0 which needs to be obtained in or-
der to rule out all classical states with a confidence

of 1− ε. Choosing first the p-value, Eq. (6) gives χ0
which can then be used to get the probability to stop
at the N th run using Eq. (5). The average number
of runs that is needed to rule out classical states can
finally be estimated as (cf. Appendix B)

〈N〉 '
∑
j≥0

n(2j + 1)
2 (Pstop(n(j + 1))− Pstop(nj))

(7)
where n is a coarse-graining parameter used to make
the computation faster.

The question at this stage is what is a good choice
for the estimator. Let us consider the space of fre-
quencies defined by (f2

s , fc) ≡
((

Ns

N

)2
, Nc

N

)
. We

choose a set of coordinates {x, y} to cancel the co-
variance and to equal the variances of P q(Ns, Nc) in
the x and y directions at first order in 1

N . This is
achieved by settingx =

√
c
bf

2
s + d√

cb
fc

y =
√

b
cfc

(8)

with 
b =

√
(1−pc(ρq))ps(ρq)
(1−ps(ρq))pc(ρq) − 1

c = 1−pc(ρq)
2ps(ρq)(1−ps(ρq))

d = −1

.

The projection of P q(Ns, Nc) in the x−y plane hence
defines circular isolines, cf. Fig. 4 red isolines. The
dashed black line in Fig. 4 distinguishes the frequen-
cies coming from classical and non-classical states. In
particular, the distributions with mean values lying on
this boundary come from states with pc(ρc) = p2

s(ρc),
i.e. coherent states with various ps. The classical sce-
nario that best reproduce the quantum statistics is
quite clearly a coherent state which minimizes the
Euclidean distance to the quantum distribution, i.e.
centered on the orthogonal projection of the quantum
distribution onto the dashed black line of Fig. 4. Such
a coherent states is associated with

ps(ρc) =

√
c(c+ d)ps(ρq)2 + (d(c+ d) + b2)pc(ρq)

b2 + (c+ d)2 .

(9)
Calling (x′0, y′0) the center of the corresponding distri-
bution P c(Ns, Nc), an estimator of the form

χ = y′ − y′0 + a(x′ − x′0)2, (10)

where x′ = cos(φ)x+sin(φ) y, y′ = cos(φ) y−sin(φ)x
and φ = arccos c+d√

b2+(c+d)2
is intuitively minimized

by the coherent state satisfying (9) for appropriate
a, as φ is such that the axis of the parabola is
orthogonal to the classical/non-classical boundary.

The probability that enough statistics is obtained
after N runs to exclude the classical distribution

6



Figure 4: Projections in the modified frequency plane
{x, y} defined in Eq. (8) of the probability distribu-
tions P q(Ns, Nc) for the quantum scenario presented
in Fig. 2 (red isolines) and P c(Ns, Nc) for the coher-
ent state defined in (9) (green isoline). The blueish
contour line is the estimator given in Eq. (10). The
dashed black line separates the mean values of quan-
tum and classical states as witnessed by a g(2)(0) mea-
surement. In particular, the shaded area includes all
states with g(2)(0) ≥ 1.

P c(Ns, Nc) with the estimator given in Eq. (10)
can be computed numerically as a function of the
steepness of the parabola a and the amplitude of
displacement operations α, β. After checking that
the considered classical strategy is indeed optimal for
the estimator (10), we obtained the optimal values
a = 40 and (α, β) ' (10.99, 0.08) for the efficiencies
discussed in the previous section and the model of
the eye matching the data of Hecht and co-workers
(θ = 7, ηe = 8%). The results are shown in Fig. 5 for
p-values of 1% and 10%. We see for example that after
350000 runs, we have more than 50% chance of being
able to rule out classical states with a confidence of
1−ε = 99%. For n = 12500, we find 〈N〉 ' 402964 for
a confidence of 99%. Note that to perform 403000 runs
with a repetition rate of 1Hz takes about 112 hours.
The latter provides an upper bound on the timescale
of the proposed experiment to get a p-value of 1%.
A similar analysis for a p-value of 10% shows that
46 hours are likely to be enough to detect the non-
classical nature of a single photon superposed with
vacuum using the human eye. This goes down to 35
hours when considering a threshold at 3 photons while
keeping 8% efficiency and to 29 hours for an efficiency
of 10% and a threshold at 7 photons.

6 Conclusion
We have presented a concrete proposal for a quantum
experiment with the human eye, including the full
analysis of the measurement statistics. It uses
simple components, namely path-entanglement,
displacement operations in phase space and non-

Figure 5: Probability to get enough statistics to con-
clude about non-classicality as a function of the num-
ber of runs N for a p-value of 1% (blue dotted line)
and 10% (red dashed line).

photon-number-resolving detectors, to certify with
naked eyes the non-classical nature of a state of light.
We have given a detailed recipe using parametric
conversions and photon-counting techniques only,
i.e. commercially available devices working at room
temperature that are routinely used in practice. We
have shown that the statistics obtained in a few tens
of hours would be sufficient to certify non-classicality
with a p-value of 10%. This was obtained with
realistic models of the human eye and taking loss and
non-unit efficiencies of photon detectors into account.
We believe that these timescales are well within
reach in practice primarily because the data do not
need to be taken in a row. Following in particular
the implementation proposed in Fig. 3 where a
single photon and a coherent state with different
polarizations impinge on a polarizing beamsplitter to
follow the same optical path and where a set of wave
plates and a polarizing beamsplitter are used to make
the displacement operations, we can certify from
our past experiment [23] that the setup is extremely
stable even without active stabilization of relative
path-length fluctuations. It is thus very likely that
the data acquisition can be stopped and started
again later for several tens of hours without problem.
Despite many preconceptions, we expect the response
of the eye to be consistent over long minutes after
appropriate dark adaptation. Slow threshold or
efficiency drifts can be taken into account easily by
periodic re-calibration of the amplitude of displace-
ment operations. We thus see our work as a concrete
and realistic proposal to realize the first experiment
where the non-classical nature of light is detected
directly with the human eye.
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8 Appendices
8.1 Autocorrelation with different arbitrary de-
tectors
Let us recall the definition of a classical state as
given in the main text: ρcl =

∫
d2α p(α)|α〉〈α| with

p(α) ≥ 0. We now relax the constraint on the symme-
try between the two arms in the autocorrelation mea-
surement, and label (1, 2) respectively the reflected
and transmitted beams. Each of those beams is sent
to a detector which can be different from the other one
and the beamsplitter prior to detection is allowed to
be unbalanced with coefficients r/t. Using the trans-
formation rules for a coherent state on a beamsplitter,
it is straightforward to express the probabilities of in-
terest as an integral of the probabilities of singles for
appropriate coherent states

Ps1(ρcl) =
∫
p(α)Ps1

(√
rα
)

d2α

Ps2(ρcl) =
∫
p(α)Ps2

(√
tα
)

d2α

Pc(ρcl) =
∫
p(α)Ps1

(√
rα
)
Ps2

(√
tα
)

d2α.

Instead of the autocorrelation which is a ratio of two
quantities, we focus on the difference

D(ρcl) = Pc(ρcl)− Ps1(ρcl)Ps2(ρcl)

=
∫
p(α)Ps1

(√
rα
)
Ps2

(√
tα
)

d2α

−
∫
p(α)Ps1

(√
rα
)

d2α

∫
p(α)Ps2

(√
tα
)

d2α,

Note that D < 0 implies g(2)(0) < 1. Upon inserting∫
p(β)d2β = 1 in Pc(ρcl) and relabelling the dummy

variable α↔ β in some of the terms we get

D(ρcl) = 1
2

∫
d2α p(α)

∫
d2β p(β)(

Ps1

(√
rα
)
− Ps1

(√
rβ
)) (

Ps2

(√
tα
)
− Ps2

(√
tβ
))

We thus obtain that if the functions Ps1/2(α) are in-
creasing with |α|2, then D(ρcl) ≥ 0 ⇔ g(2)(0)ρcl

≥ 1,
which entails the validity of our witness even in the
non-symmetrical case.

8.2 On the estimation of the average number
of runs

We introduce a formalism to deal with the issue of
finding a proper probability distribution for the num-
ber of runs. We write the sequence of measure-
ments as a list of zeros and ones, binary stochastic
results corresponding respectively to χmes > χ0(N)
and χmes ≤ χ0(N). It illustrates the situation where
an experimenter computes χ after each measurement
(or alternatively after each set of m measurements)
and decides if he carries on with the measures (“0”)
or stops because the results are already satisfactory
(“1”). Ideally what we would like to have is the proba-
bility P (n) = P (0, 0, ..., 1︸ ︷︷ ︸

n

) to reach the required statis-

tics after exactly n runs. Unfortunately, obtaining
this “true” probability numerically represents a com-
putational challenge. What we output from our simu-
lation Pstop(N) is the probability to get a one at N th

position regardless of the preceding sequence. Let’s
compare the “cumulative distributions”

∑
n≤N

P (n) = P (1) + P (0, 1) + ...+ P (0, ..., 0︸ ︷︷ ︸
N−1

, 1)

P (1) =
∑

i2,...,iN

P (1, i2, ..., iN ) where ik ∈ {0, 1}

= Pstop(N)−
∑

i2,...,iN−1

P (0, i2, ..., iN−1, 1)

+
∑

i2,...,iN−1

P (1, i2, ..., iN−1, 0)

P (0, 1)−
∑

i2,...,iN−1

P (0, i2, ..., iN−1, 1)

= −
∑

i3,...,iN−1

P (0, 0, i3, ..., iN−1, 1)

+
∑

i3,...,iN−1

P (0, 1, i3, ..., iN−1, 0)

...∑
n≤N

P (n) = Pstop(N) +
N−2∑
n=0

P (0, ..., 0︸ ︷︷ ︸
n

, 1, in+2, ..., iN−1, 0).

Therefore Pstop(N) ≤
∑
n≤N P (n). We would like to

translate it into an information on the expectation
values. Let us switch to a continuous viewpoint and
introduce functions f and g standing for the cumu-
lative distributions, with ∀x g(x) < f(x) (thus g and
f replace the Pstop and

∑
n≤N P (n) of the previous

paragraph). We write the expectation values differ-
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ence and integrate by part∫ M

0
xf ′(x)dx−

∫ M

0
xg′(x)dx = M [f(M)− g(M)]

−
∫ M

0
(f(x)− g(x))︸ ︷︷ ︸

>0

dx.

We need to know how the first term behaves when
M → ∞. We haven’t find a rigorous way to prove
that it vanishes but we notice M [f(M) − g(M)] <
M [1 − g(M)], which we reasonably assume stays fi-
nite based upon the numerical simulations. The latter
indeed reveals that N 7−→ N (1− Pstop(N)) shows a
decreasing tendency after a given N . From this we
deduce 〈N〉 ≤

∑
n n

dPstop

dn .
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