QInfer: Statistical inference software for quantum applications

Christopher Granade1,2, Christopher Ferrie3, Ian Hincks4,5, Steven Casagrande, Thomas Alexander5,6, Jonathan Gross7, Michal Kononenko5,6, and Yuval Sanders5,6,8

1School of Physics, University of Sydney, Sydney, NSW, Australia
2Centre for Engineered Quantum Systems, University of Sydney, Sydney, NSW, Australia
3University of Technology Sydney, Centre for Quantum Software and Information, Ultimo NSW 2007, Australia
4Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
5Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
6Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
7Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131-0001, USA
8Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Characterizing quantum systems through experimental data is critical to applications as diverse as metrology and quantum computing. Analyzing this experimental data in a robust and reproducible manner is made challenging, however, by the lack of readily-available software for performing principled statistical analysis. We improve the robustness and reproducibility of characterization by introducing an open-source library, QInfer, to address this need. Our library makes it easy to analyze data from tomography, randomized benchmarking, and Hamiltonian learning experiments either in post-processing, or online as data is acquired. QInfer also provides functionality for predicting the performance of proposed experimental protocols from simulated runs. By delivering easy-to-use characterization tools based on principled statistical analysis, QInfer helps address many outstanding challenges facing quantum technology.

► BibTeX data

► References

[1] G. M. D'Ariano, M. D. Laurentis, M. G. A. Paris, A. Porzio, and S. Solimeno, Quantum tomography as a tool for the characterization of optical devices, Journal of Optics B: Quantum and Semiclassical Optics 4, S127 (2002).

[2] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L. O'Brien, M. A. Nielsen, and A. G. White, Ancilla-assisted quantum process tomography, Phys. Rev. Lett. 90, 193601 (2003).

[3] J. J. Wallman and S. T. Flammia, Randomized benchmarking with confidence, New Journal of Physics 16, 103032 (2014).

[4] C. Granade, C. Ferrie, and D. G. Cory, Accelerated randomized benchmarking, New Journal of Physics 17, 013042 (2015a).

[5] A. S. Holevo, Statistical Structure of Quantum Theory, edited by R. Beig, J. Ehlers, U. Frisch, K. Hepp, W. Hillebrandt, D. Imboden, R. L. Jaffe, R. Kippenhahn, R. Lipowsky, H. v. Löhneysen, I. Ojima, H. A. Weidenmüller, J. Wess, J. Zittartz, and W. Beiglböck, Lecture Notes in Physics Monographs, Vol. 67 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001).

[6] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, 1976).

[7] B. Goldacre, Scientists are hoarding data and it's ruining medical research, BuzzFeed (2015).

[8] V. Stodden and S. Miguez, Best practices for computational science: Software infrastructure and environments for reproducible and extensible research, Journal of Open Research Software 2, e21 (2014).

[9] J. P. A. Ioannidis, Why Most Published Research Findings Are False, PLOS Med 2, e124 (2005).

[10] R. Hoekstra, R. D. Morey, J. N. Rouder, and E.-J. Wagenmakers, Robust misinterpretation of confidence intervals, Psychonomic Bulletin & Review , 1 (2014).

[11] J. P. A. Ioannidis, How to Make More Published Research True, PLOS Med 11, e1001747 (2014).

[12] Y. R. Sanders, J. J. Wallman, and B. C. Sanders, Bounding quantum gate error rate based on reported average fidelity, New Journal of Physics 18, 012002 (2016).

[13] F. Pérez and B. E. Granger, IPython: A System for Interactive Scientific Computing, Computing in Science and Engineering 9, 21 (2007).

[14] Jupyter Development Team, Jupyter, (2016).

[15] S. R. Piccolo and M. B. Frampton, Tools and techniques for computational reproducibility, GigaScience 5, 30 (2016).

[16] A. de Vries, Using R with Jupyter Notebooks, (2015).

[17] D. Donoho and V. Stodden, Reproducible research in the mathematical sciences, in The Princeton Companion to Applied Mathematics, edited by N. J. Higham (2015).

[18] C. Granade, C. Ferrie, I. Hincks, S. Casagrande, T. Alexander, J. Gross, M. Kononenko, and Y. Sanders, QInfer Examples, http:/​/​goo.gl/​4sXY1t.

[19] M. Dolfi, J. Gukelberger, A. Hehn, J. Imriška, K. Pakrouski, T. F. Rønnow, M. Troyer, I. Zintchenko, F. Chirigati, J. Freire, and D. Shasha, A model project for reproducible papers: Critical temperature for the Ising model on a square lattice, (2014), arXiv:1401.2000 [cond-mat, physics:physics].

[20] M. Van den Nest, Simulating quantum computers with probabilistic methods, Quant. Inf. Comp. 11, 784 (2011), arXiv:0911.1624.

[21] C. Ferrie, C. E. Granade, and D. G. Cory, How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies, Quantum Information Processing 12, 611 (2013).

[22] A. Sergeevich, A. Chandran, J. Combes, S. D. Bartlett, and H. M. Wiseman, Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis, Physical Review A 84, 052315 (2011).

[23] A. Doucet and A. M. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later (2011).

[24] B. A. Chase and J. M. Geremia, Single-shot parameter estimation via continuous quantum measurement, Physical Review A 79, 022314 (2009).

[25] F. Huszár and N. M. T. Houlsby, Adaptive Bayesian quantum tomography, Physical Review A 85, 052120 (2012).

[26] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, Robust online Hamiltonian learning, New Journal of Physics 14, 103013 (2012).

[27] J. Liu and M. West, Combined parameter and state estimation in simulation-based filtering, in Sequential Monte Carlo Methods in Practice, edited by De Freitas and N. Gordon (Springer-Verlag, New York, 2001).

[28] D. W. Berry and H. M. Wiseman, Optimal States and Almost Optimal Adaptive Measurements for Quantum Interferometry, Physical Review Letters 85, 5098 (2000).

[29] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Entanglement-free Heisenberg-limited phase estimation, Nature 450, 393 (2007).

[30] G. I. Struchalin, I. A. Pogorelov, S. S. Straupe, K. S. Kravtsov, I. V. Radchenko, and S. P. Kulik, Experimental adaptive quantum tomography of two-qubit states, Physical Review A 93, 012103 (2016).

[31] N. Wiebe, C. Granade, C. Ferrie, and D. G. Cory, Hamiltonian learning and certification using quantum resources, Physical Review Letters 112, 190501 (2014a).

[32] N. Wiebe, C. Granade, C. Ferrie, and D. Cory, Quantum Hamiltonian learning using imperfect quantum resources, Physical Review A 89, 042314 (2014b).

[33] N. Wiebe, C. Granade, and D. G. Cory, Quantum bootstrapping via compressed quantum Hamiltonian learning, New Journal of Physics 17, 022005 (2015).

[34] M. P. V. Stenberg, Y. R. Sanders, and F. K. Wilhelm, Efficient Estimation of Resonant Coupling between Quantum Systems, Physical Review Letters 113, 210404 (2014).

[35] K. R. W. Jones, Principles of quantum inference, Annals of Physics 207, 140 (1991).

[36] R. Blume-Kohout, Optimal, reliable estimation of quantum states, New Journal of Physics 12, 043034 (2010).

[37] C. Ferrie, Quantum model averaging, New Journal of Physics 16, 093035 (2014).

[38] C. Granade, J. Combes, and D. G. Cory, Practical Bayesian tomography, New Journal of Physics 18, 033024 (2016a).

[39] K. S. Kravtsov, S. S. Straupe, I. V. Radchenko, N. M. T. Houlsby, F. Huszár, and S. P. Kulik, Experimental adaptive Bayesian tomography, Physical Review A 87, 062122 (2013).

[40] A. Pitchford, C. Granade, P. D. Nation, and R. J. Johansson, QuTiP 4.0.0, (2015–).

[41] C. Granade, C. Ferrie, and S. T. Flammia, Practical adaptive quantum tomography, (2016b), arXiv:1605.05039 [quant-ph].

[42] W. Bruzda, V. Cappellini, H.-J. Sommers, and K. Życzkowski, Random quantum operations, Physics Letters A 373, 320 (2009).

[43] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and robust randomized benchmarking of quantum processes, Physical Review Letters 106, 180504 (2011).

[44] J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen, and M. Steffen, Characterization of Addressability by Simultaneous Randomized Benchmarking, Physical Review Letters 109, 240504 (2012).

[45] J. Wallman, C. Granade, R. Harper, and S. T. Flammia, Estimating the coherence of noise, New Journal of Physics 17, 113020 (2015).

[46] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, Scalable randomized benchmarking of non-Clifford gates, npj Quantum Information 2, 16012 (2016), arXiv:1510.02720.

[47] R. Harper and S. T. Flammia, Estimating the fidelity of $T$ gates using standard interleaved randomized benchmarking, Quantum Science and Technology 2, 015008 (2017), arXiv:1608.02943 [quant-ph].

[48] S. Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson, and T. Ohki, Robust Extraction of Tomographic Information via Randomized Benchmarking, Physical Review X 4, 011050 (2014).

[49] C. Ferrie and O. Moussa, Robust and efficient in situ quantum control, Physical Review A 91, 052306 (2015).

[50] D. J. Egger and F. K. Wilhelm, Adaptive Hybrid Optimal Quantum Control for Imprecisely Characterized Systems, Physical Review Letters 112, 240503 (2014).

[51] M. Isard and A. Blake, CONDENSATION—Conditional Density Propagation for Visual Tracking, International Journal of Computer Vision 29, 5 (1998).

[52] B. A. Chase, B. Q. Baragiola, H. L. Partner, B. D. Black, and J. M. Geremia, Magnetometry via a double-pass continuous quantum measurement of atomic spin, Physical Review A 79, 062107 (2009).

[53] C. Granade, J. Combes, and D. G. Cory, Practical Bayesian tomography supplementary video: State-space state tomography, https:/​/​goo.gl/​mkibti (2015b).

[54] C. E. Granade, Characterization, Verification and Control for Large Quantum Systems, Ph.D. thesis (2015a).

[55] N. Wiebe and C. Granade, Efficient Bayesian phase estimation, Physical Review Letters 117, 010503 (2016).

[56] S. van der Walt, S. C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering 13, 22 (2011).

[57] IPython Development Team, Ipyparallel, (2016).

[58] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes, On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods, Journal of Computational and Graphical Statistics 19, 769 (2010).

[59] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation, Parallel Computing 38, 157 (2012).

[60] S. K. Lam, A. Pitrou, and S. Seibert, Numba: A LLVM-based Python JIT Compiler, in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM '15 (ACM, New York, NY, USA, 2015) pp. 7:1–7:6.

[61] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing In Science & Engineering 9, 90 (2007).

[62] T. S. Yu, Mpltools, (2015).

[63] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, Hoboken, N.J., 2006).

[64] R. D. Gill and B. Y. Levit, Applications of the van Trees inequality: A Bayesian Cramér-Rao bound, Bernoulli 1, 59 (1995), mathematical Reviews number (MathSciNet): MR1354456.

[65] H. Jeffreys, The Theory of Probability (Oxford University Press, Oxford, 1998).

[66] W. Edwards, H. Lindman, and L. J. Savage, Bayesian statistical inference for psychological research, Psychological Review 70, 193 (1963).

[67] A. M. Johansen, A. Doucet, and M. Davy, Particle methods for maximum likelihood estimation in latent variable models, Statistics and Computing 18, 47 (2008).

[68] J. Deutscher, A. Blake, and I. Reid, Articulated body motion capture by annealed particle filtering, in Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Vol. 2 (2000) pp. 126–133 vol.2.

[69] C. Ferrie and C. E. Granade, Likelihood-free methods for quantum parameter estimation, Physical Review Letters 112, 130402 (2014).

[70] S. G. Johnson, PyCall.jl, (2016).

[71] A. Beskos, D. Crisan, and A. Jasra, On the stability of sequential Monte Carlo methods in high dimensions, The Annals of Applied Probability 24, 1396 (2014).

[72] M. West, Approximating posterior distributions by mixture, Journal of the Royal Statistical Society. Series B (Methodological) 55, 409 (1993).

[73] Y. Sanders, Characterizing Errors in Quantum Information Processors, Ph.D. thesis, University of Waterloo (2016).

[74] T. Minka, A Family of Algorithms for Approximate Bayesian Inference, Ph.D. thesis, Massachusetts Institute of Technology (2001).

[75] C. Granade, Robust online Hamiltonian learning: Multi-$\cos^2$ model resampling, https:/​/​goo.gl/​O2KmEQ (2015b).

Cited by

[1] M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. Ferreira, L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawełczak, W. Kozlowski, R. Hanson, and S. Wehner, "Experimental demonstration of entanglement delivery using a quantum network stack", npj Quantum Information 8 1, 121 (2022).

[2] Robert D. McMichael and Sean M. Blakley, "Simplified Algorithms for Adaptive Experiment Design in Parameter Estimation", Physical Review Applied 18 5, 054001 (2022).

[3] Zhenyu Cai, "Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications", npj Quantum Information 7 1, 80 (2021).

[4] Timothy Proctor, Melissa Revelle, Erik Nielsen, Kenneth Rudinger, Daniel Lobser, Peter Maunz, Robin Blume-Kohout, and Kevin Young, "Detecting and tracking drift in quantum information processors", Nature Communications 11 1, 5396 (2020).

[5] Ian Hincks, Christopher Granade, and David G Cory, "Statistical inference with quantum measurements: methodologies for nitrogen vacancy centers in diamond", New Journal of Physics 20 1, 013022 (2018).

[6] Robin Harper, Ian Hincks, Chris Ferrie, Steven T. Flammia, and Joel J. Wallman, "Statistical analysis of randomized benchmarking", Physical Review A 99 5, 052350 (2019).

[7] Arkopal Dutt, Edwin Pednault, Chai Wah Wu, Sarah Sheldon, John Smolin, Lev Bishop, and Isaac L. Chuang, "Active learning of quantum system Hamiltonians yields query advantage", Physical Review Research 5 3, 033060 (2023).

[8] Syed Muhammad Kazim, Ahmad Farooq, Junaid ur Rehman, and Hyundong Shin, "Adaptive quantum state tomography with iterative particle filtering", Quantum Information Processing 20 10, 348 (2021).

[9] Nadia Milazzo, Olivier Giraud, Giovanni Gramegna, and Daniel Braun, "Principles of quantum functional testing", Physical Review A 108 2, 022602 (2023).

[10] Sohail Reddy, "Identifiability and characterization of transmon qutrits through Bayesian experimental design", Journal of Applied Physics 135 22, 224401 (2024).

[11] Valentin Gebhart, Raffaele Santagati, Antonio Andrea Gentile, Erik M. Gauger, David Craig, Natalia Ares, Leonardo Banchi, Florian Marquardt, Luca Pezzè, and Cristian Bonato, "Learning quantum systems", Nature Reviews Physics 5 3, 141 (2023).

[12] Lukas J. Fiderer, Jonas Schuff, and Daniel Braun, "Neural-Network Heuristics for Adaptive Bayesian Quantum Estimation", PRX Quantum 2 2, 020303 (2021).

[13] Olivia Di Matteo, John Gamble, Chris Granade, Kenneth Rudinger, and Nathan Wiebe, "Operational, gauge-free quantum tomography", Quantum 4, 364 (2020).

[14] Erik Nielsen, John King Gamble, Kenneth Rudinger, Travis Scholten, Kevin Young, and Robin Blume-Kohout, "Gate Set Tomography", Quantum 5, 557 (2021).

[15] C. H. Yang, K. W. Chan, R. Harper, W. Huang, T. Evans, J. C. C. Hwang, B. Hensen, A. Laucht, T. Tanttu, F. E. Hudson, S. T. Flammia, K. M. Itoh, A. Morello, S. D. Bartlett, and A. S. Dzurak, "Silicon qubit fidelities approaching incoherent noise limits via pulse engineering", Nature Electronics 2 4, 151 (2019).

[16] Seyed Shakib Vedaie, Archismita Dalal, Eduardo J. Páez, and Barry C. Sanders, "Framework for learning and control in the classical and quantum domains", Annals of Physics 458, 169471 (2023).

[17] Akash Kundu and Jarosław Adam Miszczak, "Variational certification of quantum devices", Quantum Science and Technology 7 4, 045017 (2022).

[18] Christopher Granade and Nathan Wiebe, "Structured filtering", New Journal of Physics 19 8, 083014 (2017).

[19] Robert D. McMichael, Sergey Dushenko, and Sean M. Blakley, "Sequential Bayesian experiment design for adaptive Ramsey sequence measurements", Journal of Applied Physics 130 14, 144401 (2021).

[20] Christopher Granade, Christopher Ferrie, and Steven T Flammia, "Practical adaptive quantum tomography", New Journal of Physics 19 11, 113017 (2017).

[21] Chris Ferrie, Chris Granade, Gerardo Paz-Silva, and Howard M. Wiseman, "Bayesian quantum noise spectroscopy", New Journal of Physics 20 12, 123005 (2018).

[22] Federico Belliardo, Fabio Zoratti, and Vittorio Giovannetti, "Applications of model-aware reinforcement learning in Bayesian quantum metrology", Physical Review A 109 6, 062609 (2024).

[23] Antonio A. Gentile, Brian Flynn, Sebastian Knauer, Nathan Wiebe, Stefano Paesani, Christopher E. Granade, John G. Rarity, Raffaele Santagati, and Anthony Laing, "Learning models of quantum systems from experiments", Nature Physics 17 7, 837 (2021).

[24] A. K. Hashagen, S. T. Flammia, D. Gross, and J. J. Wallman, "Real Randomized Benchmarking", Quantum 2, 85 (2018).

[25] Jun Yang, James Brown, and James Daniel Whitfield, "A Comparison of Three Ways to Measure Time-Dependent Densities With Quantum Simulators", Frontiers in Physics 9, 546538 (2021).

[26] Thomas Lubinski, Cassandra Granade, Amos Anderson, Alan Geller, Martin Roetteler, Andrei Petrenko, and Bettina Heim, "Advancing hybrid quantum–classical computation with real-time execution", Frontiers in Physics 10, 940293 (2022).

[27] Valeria Cimini, Mauro Valeri, Emanuele Polino, Simone Piacentini, Francesco Ceccarelli, Giacomo Corrielli, Nicolò Spagnolo, Roberto Osellame, and Fabio Sciarrino, "Deep reinforcement learning for quantum multiparameter estimation", Advanced Photonics 5, 016005 (2023).

[28] Eliska Greplova, Christian Kraglund Andersen, and Klaus Mølmer, "Quantum parameter estimation with a neural network", arXiv:1711.05238, (2017).

[29] Robin Harper, Ian Hincks, Chris Ferrie, Steven T. Flammia, and Joel J. Wallman, "Statistical analysis of randomized benchmarking", arXiv:1901.00535, (2019).

[30] Federico Belliardo, Fabio Zoratti, and Vittorio Giovannetti, "Applications of model-aware reinforcement learning in Bayesian quantum metrology", arXiv:2403.05706, (2024).

[31] Federico Belliardo, Fabio Zoratti, Florian Marquardt, and Vittorio Giovannetti, "Model-aware reinforcement learning for high-performance Bayesian experimental design in quantum metrology", arXiv:2312.16985, (2023).

[32] Xi-Ning Zhuang, Zhao-Yun Chen, Cheng Xue, Xiao-Fan Xu, Chao Wang, Huan-Yu Liu, Tai-Ping Sun, Yun-Jie Wang, Yu-Chun Wu, and Guo-Ping Guo, "Statistics-Informed Parameterized Quantum Circuit via Maximum Entropy Principle for Data Science and Finance", arXiv:2406.01335, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-21 20:09:39) and SAO/NASA ADS (last updated successfully 2024-06-21 20:09:40). The list may be incomplete as not all publishers provide suitable and complete citation data.