Sandwiched Rényi Convergence for Quantum Evolutions

Alexander Müller-Hermes1 and Daniel Stilck Franca2

1Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
2Department of Mathematics, Technische Universität München, 85748 Garching, Germany

full text pdf

We study the speed of convergence of a primitive quantum time evolution towards its fixed point in the distance of sandwiched Rényi divergences. For each of these distance measures the convergence is typically exponentially fast and the best exponent is given by a constant (similar to a logarithmic Sobolev constant) depending only on the generator of the time evolution. We establish relations between these constants and the logarithmic Sobolev constants as well as the spectral gap. An important consequence of these relations is the derivation of mixing time bounds for time evolutions directly from logarithmic Sobolev inequalities without relying on notions like lp-regularity. We also derive strong converse bounds for the classical capacity of a quantum time evolution and apply these to obtain bounds on the classical capacity of some examples, including stabilizer Hamiltonians under thermal noise.


► BibTeX data

► References

[1] R. Olkiewicz and B. Zegarlinski. Hypercontractivity in noncommutative lp spaces. J. Funct. Anal., 161 (1): 246 - 285, 1999. ISSN 0022-1236. 10.1006/​jfan.1998.3342.

[2] M. J. Kastoryano and K. Temme. Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys., 54 (5): 052202, May 2013. 10.1063/​1.4804995.

[3] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel. On quantum Rényi entropies: A new generalization and some properties. J. Math. Phys., 54 (12): 122203, 2013. 10.1063/​1.4838856.

[4] M. M. Wilde, A. Winter, and D. Yang. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy. Commun. Math. Phys., 331: 593-622, October 2014. 10.1007/​s00220-014-2122-x.

[5] C. King. The capacity of the quantum depolarizing channel. IEEE Trans. Inf. Theory., 49 (1): 221-229, 2003. 10.1109/​TIT.2002.806153.

[6] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Sem. Rep., 14 (2): 59-85, 1962. 10.2996/​kmj/​1138844604.

[7] S. Beigi. Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys., 54 (12): 122202, December 2013. 10.1063/​1.4838855.

[8] F. Hiai, M. Ohya, and M. Tsukada. Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific J. Math., 96 (1): 99-109. 10.1142/​9789812794208_0030.

[9] G. L. Gilardoni. On Pinsker's and Vajda's type inequalities for Csiszar's f -divergences. IEEE Trans. Inf. Theory., 56 (11): 5377-5386, Nov 2010. ISSN 0018-9448. 10.1109/​TIT.2010.2068710.

[10] G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48 (2): 119-130. 10.1007/​BF01608499.

[11] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan. Completely positive dynamical semigroups of N-level systems. J. Math. Phys., 17: 821-825, May 1976. 10.1063/​1.522979.

[12] D. Burgarth, G. Chiribella, V. Giovannetti, P. Perinotti, and K. Yuasa. Ergodic and mixing quantum channels in finite dimensions. New J. Phys., 15 (7): 073045, July 2013. 10.1088/​1367-2630/​15/​7/​073045.

[13] H. Spohn and J. L. Lebowitz. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys, 38: 109-142. 10.1002/​9780470142578.ch2.

[14] E.B. Davies. Quantum Theory of Open Systems. Academic Press, 1976. ISBN 9780122061509.

[15] H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, 2007. ISBN 9780199213900. 10.1093/​acprof:oso/​9780199213900.001.0001.

[16] E.B. Davies. Generators of dynamical semigroups. J. Funct. Anal., 34 (3): 421 - 432, 1979. ISSN 0022-1236. 10.1016/​0022-1236(79)90085-5.

[17] A. Kossakowski, A. Frigerio, V. Gorini, and M. Verri. Quantum detailed balance and KMS condition. Commun. Math. Phys., 57 (2): 97-110, Jun 1977. ISSN 1432-0916. 10.1007/​BF01625769.

[18] H. Spohn. Entropy production for quantum dynamical semigroups. J. Math. Phys., 19 (5): 1227-1230, 1978. 10.1063/​1.523789.

[19] K. Temme. Thermalization time bounds for Pauli stabilizer hamiltonians. Commun. Math. Phys., 350 (2): 603-637, Mar 2017. ISSN 1432-0916. 10.1007/​s00220-016-2746-0.

[20] K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete. The $\chi$$^{2}$-divergence and mixing times of quantum Markov processes. J. Math. Phys., 51 (12): 122201, December 2010. 10.1063/​1.3511335.

[21] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab., 6 (3): 695-750, 08 1996. 10.1214/​aoap/​1034968224.

[22] A. Müller-Hermes, D. Stilck França, and M. M. Wolf. Relative entropy convergence for depolarizing channels. J. Math. Phys., 57 (2), 2016. 10.1063/​1.4939560.

[23] K. Temme. Lower bounds to the spectral gap of Davies generators. J. Math. Phys., 54 (12): 122110, December 2013. 10.1063/​1.4850896.

[24] T. S. Cubitt, A. Lucia, S. Michalakis, and D. Perez-Garcia. Stability of local quantum dissipative systems. Commun. Math. Phys., 337 (3): 1275-1315, 2015. ISSN 1432-0916. 10.1007/​s00220-015-2355-3.

[25] F. G. S. L. Brandão, T. S. Cubitt, A. Lucia, S. Michalakis, and D. Perez-Garcia. Area law for fixed points of rapidly mixing dissipative quantum systems. J. Math. Phys., 56 (10): 102202, October 2015. 10.1063/​1.4932612.

[26] K. Temme, F. Pastawski, and M. J. Kastoryano. Hypercontractivity of quasi-free quantum semigroups. J. Phys. A., 47 (40): 405303, 2014. 10.1088/​1751-8113/​47/​40/​405303.

[27] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, 2000. ISBN 9780521635035. 10.1017/​cbo9780511976667.

[28] A. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory., 45 (7): 2481-2485, Nov 1999. ISSN 0018-9448. 10.1109/​18.796385.

[29] T. Ogawa and H. Nagaoka. Strong converse to the quantum channel coding theorem. IEEE Trans. Inf. Theory., 45 (7): 2486-2489, Nov 1999. ISSN 0018-9448. 10.1109/​18.796386.

[30] R. König and S. Wehner. A Strong Converse for Classical Channel Coding Using Entangled Inputs. Phys. Rev. Lett, 103 (7): 070504, August 2009. 10.1103/​PhysRevLett.103.070504.

[31] M. Tomamichel, M. M. Wilde, and A. Winter. Strong converse rates for quantum communication. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 2386-2390. IEEE, 2015. 10.1109/​TIT.2016.2615847.

[32] A. Müller-Hermes, D. Stilck França, and M. M. Wolf. Entropy production of doubly stochastic quantum channels. J. Math. Phys., 57 (2): 022203, 2016. 10.1063/​1.4941136.

[33] S. B. Bravyi and A. Y. Kitaev. Quantum codes on a lattice with boundary. arXiv preprint quant-ph/​9811052, 1998.

[34] D. A. Lidar and T. A. Brun. Quantum error correction. Cambridge University Press, 2013. 10.1017/​CBO9781139034807.

[35] R. Alicki, M. Fannes, and M. Horodecki. On thermalization in Kitaev's 2D model. J. Phys. A., 42 (6): 065303, 2009. 10.1088/​1751-8113/​42/​6/​065303.

[36] M. J. Kastoryano and F. G. S. L. Brandão. Quantum Gibbs samplers: The commuting case. Commun. Math. Phys., 344 (3): 915-957, Jun 2016. ISSN 1432-0916. 10.1007/​s00220-016-2641-8.

[37] I. Bardet. Estimating the decoherence time using non-commutative Functional Inequalities. ArXiv preprint quant-ph/​1710.01039, October 2017.

[38] M. Ohya and D. Petz. Quantum Entropy and Its Use. Theoretical and Mathematical Physics. Springer, 2004. ISBN 9783540208068. 10.1007/​978-3-642-57997-4.

[39] R. L. Frank and E. H. Lieb. Monotonicity of a relative Rényi entropy. J. Math. Phys., 54 (12): 122201, 2013. 10.1063/​1.4838835.

[40] J. L. Daletskii and S. G. Krein. Integration and differentiation of functions of hermitian operators and applications to the theory of perturbations. AMS Translations (2), 47: 1-30, 1965. 10.1090/​trans2/​047/​01.

[41] F. Hiai. Matrix analysis: matrix monotone functions, matrix means, and majorization. Interdisciplinary Information Sciences, 16 (2): 139-246, 2010. 10.4036/​iis.2010.139.

[42] J. Bergh and J. Lofstrom. Interpolation spaces: an introduction, volume 223. Springer, 2012. 10.1007/​978-3-642-66451-9.

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.