Quantum Horn’s lemma, finite heat baths, and the third law of thermodynamics

Jakob Scharlau1 and Markus P. Mueller2,3,4,5,1

1Department of Theoretical Physics, University of Heidelberg, Heidelberg, Germany
2Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
3Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5BY, Canada
4Department of Philosophy, University of Western Ontario, London, ON N6A 5BY, Canada
5Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

full text pdf

Interactions of quantum systems with their environment play a crucial role in resource-theoretic approaches to thermodynamics in the microscopic regime. Here, we analyze the possible state transitions in the presence of "small" heat baths of bounded dimension and energy. We show that for operations on quantum systems with fully degenerate Hamiltonian (noisy operations), all possible state transitions can be realized exactly with a bath that is of the same size as the system or smaller, which proves a quantum version of Horn's lemma as conjectured by Bengtsson and Zyczkowski. On the other hand, if the system's Hamiltonian is not fully degenerate (thermal operations), we show that some possible transitions can only be performed with a heat bath that is unbounded in size and energy, which is an instance of the third law of thermodynamics. In both cases, we prove that quantum operations yield an advantage over classical ones for any given finite heat bath, by allowing a larger and more physically realistic set of state transitions.


► BibTeX data

► References

[1] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and Th. Beth, Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law, Int. J. Theor. Phys. 39(12), 2717-2753 (2000).

[2] M. Horodecki, P. Horodecki, and J. Oppenheim, Reversible transformations from pure to mixed states and the unique measure of information, Phys. Rev. A 67, 062104 (2003).

[3] O. C. O. Dahlsten, R. Renner, E. Rieper, and V. Vedral, Inadequacy of von Neumann entropy for characterizing extractable work, New J. Phys. 13, 053015 (2011).

[4] L. del Rio, J. Åberg, R. Renner, O. C. O. Dahlsten, and V. Vedral, The thermodynamic meaning of negative entropy, Nature 474, 61 (2011).

[5] M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Comm. 4, 2059 (2013).

[6] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens, Resource Theory of Quantum States Out of Thermal Equilibrium, Phys. Rev. Lett. 111, 250404 (2013).

[7] J. Åberg, Truly work-like work extraction via a single-shot analysis, Nat. Comm. 4, 1925 (2013).

[8] P. Skrzypczyk, A. J. Short, and S. Popescu, Work extraction and thermodynamics for individual quantum systems, Nat. Comm. 5, 4185 (2014).

[9] J. M. Renes, Work cost of thermal operations in quantum thermodynamics, Eur. Phys. J. Plus 129:153 (2014).

[10] P. Faist, F. Dupuis, J. Oppenheim, and R. Renner, The minimal work cost of information processing, Nat. Comm. 6, 7669 (2015).

[11] F. G. S. L. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. USA 112, 3275 (2015).

[12] N. Yunger Halpern, A. J. P. Garner, O. C. O. Dahlsten, and V. Vedral, Introducing one-shot work into fluctuation relations, New J. Phys. 17, 095003 (2015).

[13] D. Egloff, O. C. O. Dahlsten, R. Renner, and V. Vedral, A measure of majorization emerging from single-shot statistical mechanics, New J. Phys. 17, 073001 (2015).

[14] M. Lostaglio, M. P. Müller, and M. Pastena, Stochastic independence as a resource in small-scale thermodynamics, Phys. Rev. Lett. 115, 150402 (2015).

[15] J. Gemmer and J. Anders, From single-shot towards general work extraction in a quantum thermodynamic framework, New J. Phys. 17, 085006 (2015).

[16] Ll. Masanes and J. Oppenheim, A general derivation and quantification of the third law of thermodynamics, Nat. Comm. 8, 14538 (2017).

[17] W. Nernst, Sitzungsbericht der Königlich Preussischen Akademie der Wissenschaften, p. 134 (1912).

[18] E. M. Loebl, The Third Law of Thermodynamics, the Unattainability of Absolute Zero, and Quantum Mechanics, J. Chem. Educ. 37(7), 361-363 (1960).

[19] R. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, Cambridge, 1949.

[20] Y. Guryanova, S. Popescu, A. J. Short, R. Silva, and P. Skrzypczyk, Thermodynamics of quantum systems with multiple conserved quantities, Nat. Comm. 7, 12049 (2016).

[21] M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Comm. 6, 6383 (2015).

[22] M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum Coherence, Time-Translation Symmetry, and Thermodynamics, Phys. Rev. X 5, 021001 (2015).

[23] K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, The extraction of work from quantum coherence, New J. Phys. 18, 023045 (2016).

[24] P. Ć wikliński, M. Studziński, M. Horodecki, and J. Oppenheim, Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics, Phys. Rev. Lett. 115, 210403 (2015).

[25] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[26] B. Coecke, T. Fritz, and R. W. Spekkens, A mathematical theory of resources, Information and Computation 250, 59-86 (2016).

[27] F. G. S. L. Brandão and G. Gour, Reversible Framework for Quantum Resource Theories, Phys. Rev. Lett. 115, 070503 (2015).

[28] L. del Rio, L. Krämer, and R. Renner, Resource theories of knowledge, arXiv:1511.08818.

[29] R. Bhatia, Matrix Analysis, Springer Verlag, New York, 1997.

[30] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Verlag, New York, 2011.

[31] R. Webster, Convexity, Oxford University Press, Oxford, 1994.

[32] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics, Phys. Rep. 583, 1-58 (2015).

[33] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76, 620-630 (1954).

[34] C. Browne, A. J. P. Garner, O. C. O. Dahlsten, and V. Vedral, Guaranteed Energy-Efficient Bit Reset in Finite Time, Phys. Rev. Lett. 113, 100603 (2014).

[35] K. Życzkowski and I. Bengtsson, On Duality between Quantum Maps and Quantum States, Open Syst. Inf. Dyn. 11, 3 (2004).

[36] I. Bengtsson and K. Życzkowski, Geometry of Quantum States, Cambridge University Press, Cambridge, 2006.

[37] M. Musz, M. Kuś, and K. Życzkowski, Unitary quantum gates, perfect entanglers, and unistochastic maps, Phys. Rev. A 87, 022111 (2013).

[38] E. Ruch and A. Mead, The principle of increasing mixing character and some of its consequences, Theoret. Chim. Acta (Berl.) 41, 95-117 (1976).

[39] R. Ruch, R. Schranner, and T. H. Seligman, The mixing distance, J. Chem. Phys. 69, 386 (1978).

[40] E. Ruch, R. Schranner, and T. H. Seligman, Generalization of a Theorem by Hardy, Littlewood, and Pólya, J. Math. Anal. Appl. 76, 222-229 (1980).

[41] P. Shor, Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture, presentation, slides at http:/​/​science-visits.mccme.ru/​doc/​steklov-talk.pdf, 2010.

[42] U. Haagerup and M. Musat, Factorization and dilation problems for completely positive maps on von Neumann algebras, Commun. Math. Phys. 303(2), 555-594 (2011).

[43] P. Faist, J. Oppenheim, and R. Renner, Gibbs-preserving maps outperform thermal operations in the quantum regime, New J. Phys. 17, 043003 (2015).

[44] C. Perry, P. Ć wikliński, J. Anders, M. Horodecki, and J. Oppenheim, A sufficient set of experimentally implementable thermal operations, arXiv:1511.06553.

[45] N. H. Y. Ng, M. Mančinska, C. Cirstoiu, J. Eisert, and S. Wehner, Limits to catalysis in quantum thermodynamics, New J. Phys. 17, 085004 (2015).

[46] S. Daftuar and P. Hayden, Quantum state transformations and the Schubert calculus, Ann. Phys. 315(1), 80-122 (2005).

[47] J. Scharlau, The resource theories of non-uniformity and athermality: State transitions with finite size environments, Master thesis, Heidelberg University, 2015.

[48] C. Li, Y. Poon, and X. Wang, Ranks and eigenvalues of states with prescribed reduced states, Electron. J. Linear Algebra 27, 1074 (2014).

[49] M. Vergne and M. Walter, Inequalities for Moment Cones of Finite-Dimensional Representations, Journal of Symplectic Geometry 15(4), 1209-1250 (2017).

[50] D. Reeb and M. M. Wolf, An improved Landauer Principle with finite-size corrections, New J. Phys. 16, 103011 (2014).

[51] A. E. Allahverdyan, K. V. Hovhannisyan, D. Janzing, and G. Mahler, Thermodynamic limits of dynamic cooling, Phys. Rev. E 84, 041109 (2011).

[52] L.-A. Wu, D. Segal, and P. Brumer, No-go theorem for ground state cooling given initial system-thermal bath factorization, Sci. Rep. 3, 1824 (2013).

[53] F. Ticozzi and L. Viola, Quantum resources for purification and cooling: fundamental limits and opportunities, Sci. Rep. 4, 5192 (2014).

[54] P. Skrzypczyk, A. J. Short, and S. Popescu, Extracting work from quantum systems, arXiv:1302.2811.

► Cited by (beta)

Crossref's cited-by service has no data on citing works. Unfortunately not all publishers provide suitable citation data.