Uncertainty relations: An operational approach to the error-disturbance tradeoff

Joseph M. Renes1, Volkher B. Scholz1,2, and Stefan Huber1,3

1Institute for Theoretical Physics, ETH Zürich, Switzerland
2Department of Physics, Ghent University, Belgium
3Department of Mathematics, Technische Universität München, Germany

The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurements, and comparing the values of unmeasured observables is not necessarily meaningful according to quantum theory. To overcome these conceptual difficulties, we take a different approach and define error and disturbance in an operational manner. In particular, we formulate both in terms of the probability that one can successfully distinguish the actual measurement device from the relevant hypothetical ideal by any experimental test whatsoever. This definition itself does not rely on the formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions. We then derive new Heisenberg-type uncertainty relations for both joint measurability and the error-disturbance tradeoff for arbitrary observables of finite-dimensional systems, as well as for the case of position and momentum. Our relations may be directly applied in information processing settings, for example to infer that devices which can faithfully transmit information regarding one observable do not leak any information about conjugate observables to the environment. We also show that Englert's wave-particle duality relation [PRL 77, 2154 (1996)] can be viewed as an error-disturbance uncertainty relation.

Share

► BibTeX data

► References

[1] Heisenberg ``Über Den Anschaulichen Inhalt'' Zeitschrift für Physik 43, 172-198 (1927).
https://doi.org/10.1007/BF01397280

[2] Wheelerand Zurek ``Quantum Theory'' Princeton University Press (1984).

[3] Kennard ``Zur Quantenmechanik'' Zeitschrift für Physik 44, 326-352 (1927).
https://doi.org/10.1007/BF01391200

[4] Robertson ``The Uncertainty Principle'' Physical Review 34, 163 (1929).
https://doi.org/10.1103/PhysRev.34.163

[5] Maassenand Uffink ``Generalized Entropic Uncertainty Relations'' Physical Review Letters 60, 1103 (1988).
https://doi.org/10.1103/PhysRevLett.60.1103

[6] Berta, Christandl, Colbeck, Renes, and Renner, ``The Uncertainty Principle in the Presence of Quantum Memory'' Nature Physics 6, 659-662 (2010).
https://doi.org/10.1038/nphys1734
arXiv:0909.0950

[7] Coles, Berta, Tomamichel, and Wehner, ``Entropic Uncertainty Relations and Their Applications'' Reviews of Modern Physics 89, 015002 (2017).
https://doi.org/10.1103/RevModPhys.89.015002
arXiv:1511.04857

[8] Arthursand Kelly ``On the Simultaneous Measurement'' Bell System Technical Journal 44, 725-729 (1965).
https://doi.org/10.1002/j.1538-7305.1965.tb01684.x

[9] Sheand Heffner ``Simultaneous Measurement'' Physical Review 152, 1103-1110 (1966).
https://doi.org/10.1103/PhysRev.152.1103

[10] Davies ``Quantum Theory of Open Systems'' Academic Press (1976).

[11] Aliand Prugovečki ``Systems of Imprimitivity and Representations of Quantum Mechanics on Fuzzy Phase Spaces'' Journal of Mathematical Physics 18, 219-228 (1977).
https://doi.org/10.1063/1.523259

[12] Prugovečki ``On Fuzzy Spin Spaces'' Journal of Physics A: Mathematical and General 10, 543 (1977).
https://doi.org/10.1088/0305-4470/10/4/016

[13] Busch ``Indeterminacy Relations and Simultaneous Measurements in Quantum Theory'' International Journal of Theoretical Physics 24, 63-92 (1985).
https://doi.org/10.1007/BF00670074

[14] Busch ``Unsharp Reality and Joint Measurements for Spin Observables'' Physical Review D 33, 2253-2261 (1986).
https://doi.org/10.1103/PhysRevD.33.2253

[15] Arthursand Goodman ``Quantum Correlations'' Physical Review Letters 60, 2447-2449 (1988).
https://doi.org/10.1103/PhysRevLett.60.2447

[16] Martensand W. M. Muynck ``Towards a New Uncertainty Principle: Quantum Measurement Noise'' Physics Letters A 157, 441-448 (1991).
https://doi.org/10.1016/0375-9601(91)91015-6

[17] Ishikawa ``Uncertainty Relations in Simultaneous Measurements for Arbitrary Observables'' Reports on Mathematical Physics 29, 257-273 (1991).
https://doi.org/10.1016/0034-4877(91)90046-P

[18] Raymer ``Uncertainty Principle for Joint Measurement of Noncommuting Variables'' American Journal of Physics 62, 986-993 (1994).
https://doi.org/10.1119/1.17657

[19] Leonhardt, Böhmer, and Paul, ``Uncertainty Relations for Realistic Joint Measurements of Position and Momentum in Quantum Optics'' Optics Communications 119, 296-300 (1995).
https://doi.org/10.1016/0030-4018(95)00321-X

[20] Appleby ``Concept of Experimental Accuracy'' International Journal of Theoretical Physics 37, 1491-1509 (1998).
https://doi.org/10.1023/A:1026659601439
arXiv:quant-ph/9803046

[21] Hall ``Prior Information: How'' Physical Review A 69, 052113 (2004).
https://doi.org/10.1103/PhysRevA.69.052113
arXiv:quant-ph/0309091

[22] Werner ``The Uncertainty Relation for Joint Measurement of Position and Momentum'' Quantum Information and Computation 4, 546-562 (2004).
arXiv:quant-ph/0405184

[23] Ozawa ``Uncertainty Relations for Joint Measurements of Noncommuting Observables'' Physics Letters A 320, 367-374 (2004).
https://doi.org/10.1016/j.physleta.2003.12.001

[24] Watanabe, Sagawa, and Ueda, ``Uncertainty Relation Revisited from Quantum Estimation Theory'' Physical Review A 84, 042121 (2011).
https://doi.org/10.1103/PhysRevA.84.042121
arXiv:1010.3571

[25] Busch, Lahti, and Werner, ``Proof of Heisenberg'' Physical Review Letters 111, 160405 (2013).
https://doi.org/10.1103/PhysRevLett.111.160405
arXiv:1306.1565

[26] Busch, Lahti, and Werner, ``Heisenberg Uncertainty for Qubit Measurements'' Physical Review A 89, 012129 (2014).
https://doi.org/10.1103/PhysRevA.89.012129
arXiv:1311.0837

[27] Busch, Lahti, and Werner, ``Measurement Uncertainty Relations'' Journal of Mathematical Physics 55, 042111 (2014).
https://doi.org/10.1063/1.4871444
arXiv:1312.4392

[28] Braginskyand Khalili ``Quantum Measurement'' Cambridge University Press (1992).
https://doi.org/0.1017/CBO9780511622748

[29] Martensand W. M. Muynck ``Disturbance, Conservation Laws and the Uncertainty Principle'' Journal of Physics A: Mathematical and General 25, 4887 (1992).
https://doi.org/10.1088/0305-4470/25/18/021

[30] Ozawa ``Universally Valid Reformulation of the Heisenberg'' Physical Review A 67, 042105 (2003).
https://doi.org/10.1103/PhysRevA.67.042105
arXiv:quant-ph/0207121

[31] Watanabeand Ueda ``Quantum Estimation Theory'' (2011).
arXiv:1106.2526

[32] Branciard ``Error-Tradeoff and Error-Disturbance Relations for Incompatible Quantum Measurements'' Proceedings of the National Academy of Sciences 110, 6742-6747 (2013).
https://doi.org/10.1073/pnas.1219331110
arXiv:1304.2071

[33] Buscemi, Hall, Ozawa, and Wilde, ``Noise and Disturbance'' Physical Review Letters 112, 050401 (2014).
https://doi.org/10.1103/PhysRevLett.112.050401
arXiv:1310.6603

[34] Ipsen ``Error-Disturbance Relations for Finite Dimensional Systems'' (2013).
arXiv:1311.0259

[35] Colesand Furrer ``State-Dependent Approach to Entropic Measurement–'' Physics Letters A 379, 105-112 (2015).
https://doi.org/10.1016/j.physleta.2014.11.002
arXiv:1311.7637

[36] Ozawa ``Uncertainty Relations for Noise and Disturbance in Generalized Quantum Measurements'' Annals of Physics 311, 350-416 (2004).
https://doi.org/10.1016/j.aop.2003.12.012

[37] Busch, Lahti, and Werner, ``Quantum Root-Mean-Square Error and Measurement Uncertainty Relations'' Reviews of Modern Physics 86, 1261-1281 (2014).
https://doi.org/10.1103/RevModPhys.86.1261
arXiv:1312.4393

[38] Appleby ``Quantum Errors'' Entropy 18, 174 (2016).
https://doi.org/10.3390/e18050174
arXiv:1602.09002

[39] Ozawa ``Disproving Heisenberg'' (2013).
arXiv:1308.3540

[40] Kretschmann, Schlingemann, and Werner, ``The Information'' IEEE Transactions on Information Theory 54, 1708-1717 (2008).
https://doi.org/10.1109/TIT.2008.917696
arXiv:quant-ph/0605009

[41] Kretschmann, Schlingemann, and Werner, ``A Continuity Theorem for Stinespring'' Journal of Functional Analysis 255, 1889-1904 (2008).
https://doi.org/16/j.jfa.2008.07.023
arXiv:0710.2495

[42] Englert ``Fringe Visibility'' Physical Review Letters 77, 2154 (1996).
https://doi.org/10.1103/PhysRevLett.77.2154

[43] Renesand Boileau ``Conjectured Strong Complementary Information Tradeoff'' Physical Review Letters 103, 020402 (2009).
https://doi.org/10.1103/PhysRevLett.103.020402
arXiv:0806.3984

[44] Tomamicheland Renner ``Uncertainty Relation'' Physical Review Letters 106, 110506 (2011).
https://doi.org/10.1103/PhysRevLett.106.110506
arXiv:1009.2015

[45] Tomamichel, Lim, Gisin, and Renner, ``Tight Finite-Key Analysis for Quantum Cryptography'' Nature Communications 3, 634 (2012).
https://doi.org/10.1038/ncomms1631
arXiv:1103.4130

[46] Lacerda, Renes, and Renner, ``Classical Leakage Resilience from Fault-Tolerant Quantum Computation'' (2014).
arXiv:1404.7516

[47] Kraus ``States, Effects'' Springer-Verlag (1983).

[48] WernerType incollection not implemented!.
https://doi.org/10.1007/3-540-44678-8_2
arXiv:quant-ph/0101061

[49] Wolf ``Quantum Channels'' (2012).

[50] Bényand Richter ``Algebraic Approach to Quantum Theory: A Finite-Dimensional Guide'' (2015).
arXiv:1505.03106

[51] Kitaev ``Quantum Computations: Algorithms'' Russian Mathematical Surveys 52, 1191-1249 (1997).
https://doi.org/10.1070/RM1997v052n06ABEH002155

[52] Paulsen ``Completely Bounded Maps'' Cambridge University Press (2003).

[53] Gilchrist, Langford, and Nielsen, ``Distance Measures to Compare Real and Ideal Quantum Processes'' Physical Review A 71, 062310 (2005).
https://doi.org/10.1103/PhysRevA.71.062310
arXiv:quant-ph/0408063

[54] Watrous ``Semidefinite Programs'' Theory of Computing 5, 217-238 (2009).
https://doi.org/10.4086/toc.2009.v005a011
arXiv:0901.4709

[55] Watrous ``Simpler Semidefinite Programs for Completely Bounded Norms'' Chicago Journal of Theoretical Computer Science 2013, 8 (2013).
https://doi.org/10.4086/cjtcs.2013.008
arXiv:1207.5726

[56] Stinespring ``Positive Functions on C'' Proceedings of the American Mathematical Society 6, 211-216 (1955).
https://doi.org/10.1090/S0002-9939-1955-0069403-4

[57] Colesand Piani ``Improved Entropic Uncertainty Relations and Information Exclusion Relations'' Physical Review A 89, 022112 (2014).
https://doi.org/10.1103/PhysRevA.89.022112
arXiv:1307.4265

[58] Shorand Preskill ``Simple Proof'' Physical Review Letters 85, 441 (2000).
https://doi.org/10.1103/PhysRevLett.85.441
arXiv:quant-ph/0003004

[59] Devetak ``The Private Classical Capacity and Quantum Capacity of a Quantum Channel'' IEEE Transactions on Information Theory 51, 44-55 (2005).
https://doi.org/10.1109/TIT.2004.839515
arXiv:quant-ph/0304127

[60] Renes ``Duality of Privacy Amplification against Quantum Adversaries and Data Compression with Quantum Side Information'' Proceedings of the Royal Society A 467, 1604-1623 (2011).
https://doi.org/10.1098/rspa.2010.0445
arXiv:1003.0703

[61] RenesType thesis not implemented!.
arXiv:1212.2379

[62] Renes ``Uncertainty Relations and Approximate Quantum Error Correction'' Physical Review A 94, 032314 (2016).
https://doi.org/10.1103/PhysRevA.94.032314
arXiv:1605.01420

[63] Coles, Kaniewski, and Wehner, ``Equivalence of Wave–'' Nature Communications 5, 5814 (2014).
https://doi.org/10.1038/ncomms6814
arXiv:1403.4687

[64] Coles ``Entropic Framework for Wave-Particle Duality in Multipath Interferometers'' Physical Review A 93, 062111 (2016).
https://doi.org/10.1103/PhysRevA.93.062111
arXiv:1512.09081

[65] Korzekwa, Jennings, and Rudolph, ``Operational Constraints on State-Dependent Formulations of Quantum Error-Disturbance Trade-off Relations'' Physical Review A 89, 052108 (2014).
https://doi.org/10.1103/PhysRevA.89.052108
arXiv:1311.5506

[66] Barchielli, Gregoratti, and Toigo, ``Measurement Uncertainty Relations for Discrete Observables: Relative'' (2016).
arXiv:1608.01986

[67] Sacchi ``Entanglement Can Enhance the Distinguishability of Entanglement-Breaking Channels'' Physical Review A 72, 014305 (2005).
https://doi.org/10.1103/PhysRevA.72.014305
arXiv:quant-ph/0505174

[68] Belavkin ``Optimal Multiple Quantum Statistical Hypothesis Testing'' Stochastics 1, 315 (1975).
https://doi.org/10.1080/17442507508833114

[69] Hausladenand Wootters ``A `Pretty Good'' Journal of Modern Optics 41, 2385 (1994).
https://doi.org/10.1080/09500349414552221