Achieving quantum supremacy with sparse and noisy commuting quantum computations

Michael J. Bremner1, Ashley Montanaro2, and Dan J. Shepherd3

1Centre for Quantum Computation and Communication Technology, Centre for Quantum Software and Information, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
2School of Mathematics, University of Bristol, UK
33NCSC, Hubble Road, Cheltenham, UK

The class of commuting quantum circuits known as IQP (instantaneous quantum polynomial-time) has been shown to be hard to simulate classically, assuming certain complexity-theoretic conjectures. Here we study the power of IQP circuits in the presence of physically motivated constraints. First, we show that there is a family of sparse IQP circuits that can be implemented on a square lattice of n qubits in depth O(sqrt(n) log n), and which is likely hard to simulate classically. Next, we show that, if an arbitrarily small constant amount of noise is applied to each qubit at the end of any IQP circuit whose output probability distribution is sufficiently anticoncentrated, there is a polynomial-time classical algorithm that simulates sampling from the resulting distribution, up to constant accuracy in total variation distance. However, we show that purely classical error-correction techniques can be used to design IQP circuits which remain hard to simulate classically, even in the presence of arbitrary amounts of noise of this form. These results demonstrate the challenges faced by experiments designed to demonstrate quantum supremacy over classical computation, and how these challenges can be overcome.

Share

► BibTeX data

► References

[1] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of Computing, 9 (4): 143-252, 2013. arXiv:1011.3245.
https://doi.org/10.1145/1993636.1993682
arXiv:1011.3245

[2] N. Alon, A. Frieze, and D. Welsh. Polynomial time randomized approximation schemes for the Tutte polynomial of dense graphs. In Proc. 35th Annual Symp. Foundations of Computer Science, 1994, page 24.
https://doi.org/10.1109/SFCS.1994.365708

[3] A. Arkhipov. BosonSampling is robust to small errors in the network matrix. Phys. Rev. A, 92: 062326, 2015. arXiv:1412.2516.
https://doi.org/10.1103/PhysRevA.92.062326
arXiv:1412.2516

[4] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of NP-hard problems. Journal of Computer and System Sciences, 58: 193-210, 1999.
https://doi.org/10.1145/225058.225140

[5] R. Beals, S. Brierley, O. Gray, A. Harrow, S. Kutin, N. Linden, D. Shepherd, and M. Stather. Efficient distributed quantum computing. Proc. Roy. Soc. A, 469: 20120686, 2013. arXiv:1207.2307.
https://doi.org/10.1098/rspa.2012.0686
arXiv:1207.2307

[6] J. Bermejo-Vega, D. Hangleiter, M. Schwarz, R. Raussendorf, and J. Eisert. Architectures for quantum simulation showing quantum supremacy, 2017. arXiv:1703.00466.
arXiv:1703.00466

[7] S. Boixo, S. Isakov, V. Smelyanskiy, R. Babbush, N. Ding, Z. Jian, J. Martinis, and H. Neven. Characterizing quantum supremacy in near-term devices, 2016. arXiv:1608.00263.
arXiv:1608.00263

[8] B. Bollobás. The distribution of the maximum degree of a random graph. Discrete Mathematics, 32: 201-203, 1980.
https://doi.org/10.1016/0012-365X(80)90054-0

[9] C. Brand, H. Dell, and M. Roth. Fine-grained dichotomies for the Tutte plane and Boolean ĊSP, 2016. arXiv:1606.06581.
arXiv:1606.06581

[10] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. Ser. A, 467 (2126): 459-472, 2011. arXiv:1005.1407.
https://doi.org/10.1098/rspa.2010.0301
arXiv:1005.1407

[11] M. Bremner, A. Montanaro, and D. Shepherd. Average-case complexity versus approximate simulation of commuting quantum computations. Phys. Rev. Lett., 117: 080501, 2016. arXiv:1504.07999.
https://doi.org/10.1103/PhysRevLett.117.080501
arXiv:1504.07999

[12] W. Brown and O. Fawzi. Scrambling speed of random quantum circuits, 2012. arXiv:1210.6644.
arXiv:1210.6644

[13] W. Brown and O. Fawzi. Decoupling with random quantum circuits. Comm. Math. Phys., 340 (3): 867-900, 2015. arXiv:1307.0632.
https://doi.org/10.1007/s00220-015-2470-1
arXiv:1307.0632

[14] H. Buhrman, R. Cleve, M. Laurent, N. Linden, A. Schrijver, and F. Unger. New limits on fault-tolerant quantum computation. In Proc. 47th Annual Symp. Foundations of Computer Science, 2006, pages 411-419. quant-ph/​0604141.
https://doi.org/10.1109/FOCS.2006.50
arXiv:quant-ph/0604141

[15] R. Curticapean. Block interpolation: A framework for tight exponential-time counting complexity. In Proc. 42nd International Conference on Automata, Languages and Programming (ICALP'15), 2015, pages 380-392. arXiv:1511.02910.
https://doi.org/10.1007/978-3-662-47672-7_31
arXiv:1511.02910

[16] R. Diestel. Graph Theory. Springer, 2010.

[17] D. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized algorithms. Cambridge University Press, 2009.

[18] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm, 2014. arXiv:1411.4028.
arXiv:1411.4028

[19] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem, 2014. arXiv:1412.6062.
arXiv:1412.6062

[20] E. Farhi and A. Harrow. Quantum supremacy through the Quantum Approximate Optimization Algorithm, 2016. arXiv:1602.07674.
arXiv:1602.07674

[21] K. Fujii and S. Tamate. Computational quantum-classical boundary of noisy commuting quantum circuits. Scientific Reports, 6: 25598, 2016. arXiv:1406.6932.
https://doi.org/10.1038/srep25598
arXiv:1406.6932

[22] X. Gao, S.-T. Wang, and L.-M. Duan. Quantum supremacy for simulating a translation-invariant Ising spin model. Phys. Rev. Lett., 118: 040502, 2017. arXiv:1607.04947.
https://doi.org/10.1103/PhysRevLett.118.040502
arXiv:1607.04947

[23] D. Hangleiter, M. Kliesch, M. Schwarz, and J. Eisert. Direct certification of a class of quantum simulations. Quantum Science and Technology, 1 (2), 2017. arXiv:1602.00703.
https://doi.org/10.1088/2058-9565/2/1/015004
arXiv:1602.00703

[24] G. Kalai. The quantum computer puzzle. Notices of the AMS, 63 (5): 508-516, 2016. arXiv:1605.00992.
https://doi.org/10.1090/noti1380
arXiv:1605.00992

[25] G. Kalai and G. Kindler. Gaussian noise sensitivity and BosonSampling, 2014. arXiv:1409.3093.
arXiv:1409.3093

[26] J. Kempe, O. Regev, F. Unger, and R. de Wolf. Upper bounds on the noise threshold for fault-tolerant quantum computing. In Proc. 35th International Conference on Automata, Languages and Programming (ICALP'08), 2008, pages 845-856. arXiv:0802.1464.
https://doi.org/10.1007/978-3-540-70575-8_69
arXiv:0802.1464

[27] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. In Proc. 23rd Annual ACM Symp. Theory of Computing, 1991, pages 455-464.
https://doi.org/10.1137/0222080

[28] A. Leverrier and R. García-Patrón. Analysis of circuit imperfections in BosonSampling. Quantum Inf. Comput., 15: 0489-0512, 2015. arXiv:1309.4687.
arXiv:1309.4687

[29] I. Markov and Y. Shi. Simulating quantum computation by contracting tensor networks. SIAM J. Comput., 38: 963-981, 2008. quant-ph/​0511069.
https://doi.org/10.1137/050644756
arXiv:quant-ph/0511069

[30] M. Marvian and D. Lidar. Error suppression for Hamiltonian-based quantum computation using subsystem codes, 2016. arXiv:1606.03795.
arXiv:1606.03795

[31] T. Morimae, K. Fujii, and J. Fitzsimons. On the hardness of classically simulating the one-clean-qubit model. Phys. Rev. Lett., 112: 130502, 2014. arXiv:1312.2496.
https://doi.org/10.1103/PhysRevLett.112.130502
arXiv:1312.2496

[32] R. O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[33] J. Preskill. Quantum computing and the entanglement frontier, 2012. arXiv:1203.5813.
arXiv:1203.5813

[34] S. Rahimi-Keshari, T. Ralph, and C. Caves. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X, 6: 021039, 2016. arXiv:1511.06526.
https://doi.org/10.1103/PhysRevX.6.021039
arXiv:1511.06526

[35] A. Razborov. An upper bound on the threshold quantum decoherence rate. Quantum Inf. Comput., 4 (3): 222-228, 2004. quant-ph/​0310136.
arXiv:quant-ph/0310136

[36] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press, 2008.

[37] C. Schnorr and A. Shamir. An optimal sorting algorithm for mesh connected computers. In Proc. 18th Annual ACM Symp. Theory of Computing, 1986, pages 255-263.
https://doi.org/10.1145/12130.12156

[38] M. Schwarz and M. Van den Nest. Simulating quantum circuits with sparse output distributions, 2013. arXiv:1310.6749.
arXiv:1310.6749

[39] V. Shchesnovich. Tight bound on trace distance between a realistic device with partially indistinguishable bosons and the ideal BosonSampling. Phys. Rev. A, 91: 063842, 2015. arXiv:1501.00850.
https://doi.org/10.1103/PhysRevA.91.063842
arXiv:1501.00850

[40] D. Shepherd. Binary matroids and quantum probability distributions, 2010. arXiv:1005.1744.
arXiv:1005.1744

[41] D. Shepherd and M. J. Bremner. Temporally unstructured quantum computation. Proc. Roy. Soc. Ser. A, 465 (2105): 1413-1439, 2009. arXiv:0809.0847.
https://doi.org/10.1098/rspa.2008.0443
arXiv:0809.0847

[42] D. R. Simon. On the power of quantum computation. SIAM J. Comput., 26: 1474-1483, 1997.
https://doi.org/10.1137/S0097539796298637

[43] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20 (5): 865-877, 1991.
https://doi.org/10.1137/0220053

[44] S. Virmani, S. Huelga, and M. Plenio. Classical simulability, entanglement breaking, and quantum computation thresholds. Phys. Rev. A, 71: 042328, 2005. quant-ph/​0408076.
https://doi.org/10.1103/PhysRevA.71.042328
arXiv:quant-ph/0408076

► Cited by (beta)

[1] Aram W. Harrow, Ashley Montanaro, "Quantum computational supremacy", Nature 549, 203 (2017).

[2] Yosi Atia, Dorit Aharonov, "Fast-forwarding of Hamiltonians and exponentially precise measurements", Nature Communications 8, 1572 (2017).

[3] Tameem Albash, Victor Martin-Mayor, Itay Hen, "Temperature Scaling Law for Quantum Annealing Optimizers", Physical Review Letters 119, 110502 (2017).

[4] Alex Neville, Chris Sparrow, Raphaël Clifford, Eric Johnston, Patrick M. Birchall, Ashley Montanaro, Anthony Laing, "Classical boson sampling algorithms with superior performance to near-term experiments", Nature Physics (2017).

(The above data is from Crossref's cited-by service. Unfortunately not all publishers provide suitable and complete citation data so that some citing works or bibliographic details may be missing.)