Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_G(3)$

Flavien Hirsch1, Marco Túlio Quintino1,2, Tamás Vértesi3, Miguel Navascués4, and Nicolas Brunner1

1Groupe de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
2Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
3Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51, Hungary
4Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmangasse 3, 1090 Vienna, Austria

We consider the problem of reproducing the correlations obtained by arbitrary local projective measurements on the two-qubit Werner state $\rho = v |\psi_- \rangle \langle\psi_- | + (1- v ) \frac{1}{4}$ via a local hidden variable (LHV) model, where $|\psi_- \rangle$ denotes the singlet state. We show analytically that these correlations are local for $ v = 999\times689\times{10^{-6}}$ $\cos^2(\pi/50) \simeq 0.6829$. In turn, as this problem is closely related to a purely mathematical one formulated by Grothendieck, our result implies a new bound on the Grothendieck constant $K_G(3) \leq 1/v \simeq 1.4644$. We also present a LHV model for reproducing the statistics of arbitrary POVMs on the Werner state for $v \simeq 0.4553$. The techniques we develop can be adapted to construct LHV models for other entangled states, as well as bounding other Grothendieck constants.


► BibTeX data

► References

[1] J. S. Bell, ``On the Einstein-Poldolsky-Rosen paradox,'' Physics 1, 195-200 (1964). https:/​/​​record/​111654/​files/​vol1p195-200_001.pdf.

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, ``Bell nonlocality,'' Reviews of Modern Physics 86, 419-478 (2014), arXiv:1303.2849 [quant-ph].

[3] N. Gisin, ``Bell's inequality holds for all non-product states,'' Physics Letters A 154, 201 - 202 (1991).

[4] R. F. Werner, ``Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,'' Phys. Rev. A 40, 4277-4281 (1989).

[5] J. Barrett, ``Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality,'' Phys. Rev. A 65, 042302 (2002), quant-ph/​0107045.

[6] M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acín, ``Noise Robustness of the Nonlocality of Entangled Quantum States,'' Phys. Rev. Lett. 99, 040403 (2007), quant-ph/​0703018.

[7] H. M. Wiseman, S. J. Jones, and A. C. Doherty, ``Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,'' Phys. Rev. Lett. 98, 140402 (2007), quant-ph/​0612147.

[8] F. Hirsch, M. T. Quintino, J. Bowles, and N. Brunner, ``Genuine Hidden Quantum Nonlocality,'' Phys. Rev. Lett. 111, 160402 (2013), arXiv:1307.4404 [quant-ph].

[9] J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, ``One-way Einstein-Podolsky-Rosen Steering,'' Phys. Rev. Lett. 112, 200402 (2014), arXiv:1402.3607 [quant-ph].

[10] S. Jevtic, M. J. W. Hall, M. R. Anderson, M. Zwierz, and H. M. Wiseman, ``Einstein-Podolsky-Rosen steering and the steering ellipsoid,'' Journal of the Optical Society of America B Optical Physics 32, A40 (2015), arXiv:1411.1517 [quant-ph].

[11] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, ``Local Hidden Variable Models for Entangled Quantum States Using Finite Shared Randomness,'' Phys. Rev. Lett. 114, 120401 (2015), arXiv:1412.1416 [quant-ph].

[12] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, ``Sufficient criterion for guaranteeing that a two-qubit state is unsteerable,'' Phys. Rev. A 93, 022121 (2016), arXiv:1510.06721 [quant-ph].

[13] H. Chau Nguyen and T. Vu, ``Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes,'' EPL (Europhysics Letters) 115, 10003 (2016), arXiv:1604.03815 [quant-ph].

[14] G. Tóth and A. Acín, ``Genuine tripartite entangled states with a local hidden-variable model,'' Phys. Rev. A 74, 030306 (2006), quant-ph/​0512088.

[15] J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, and N. Brunner, ``Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality,'' Phys. Rev. Lett. 116, 130401 (2016), arXiv:1511.08401 [quant-ph].

[16] R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, ``Entanglement and Nonlocality are Inequivalent for Any Number of Parties,'' Phys. Rev. Lett. 115, 030404 (2015), arXiv:1407.3114 [quant-ph].

[17] R. Augusiak, M. Demianowicz, and A. Acín, ``Local hidden-variable models for entangled quantum states,'' Journal of Physics A Mathematical General 47, 424002 (2014), arXiv:1405.7321 [quant-ph].

[18] A. Acín, N. Gisin, and B. Toner, ``Grothendieck's constant and local models for noisy entangled quantum states,'' Phys. Rev. A 73, 062105 (2006), quant-ph/​0606138.

[19] B. S. Tsirelson, ``Some results and problems on quantum Bell-type inequalities,'' Hadronic Journal Supplement 8, 329-345 (1993). http:/​/​​ tsirel/​download/​hadron.pdf.

[20] A. Grothendieck, ``Résumé de la théorie métrique des produits tensoriels topologiques,'' Bol. Soc. Mat. São Paulo 8, (1953). https:/​/​​acervovirtual/​textos/​estrangeiros/​grothendieck/​produits_tensoriels_topologiques/​files/​produits_tensoriels_topologiques.pdf.

[21] J. Krivine, ``Constantes de Grothendieck et fonctions de type positif sur les sphères,'' Advances in Mathematics 31, 16 - 30 (1979).

[22] T. Vértesi, ``More efficient Bell inequalities for Werner states,'' Phys. Rev. A 78, 032112 (2008), arXiv:0806.0096 [quant-ph].

[23] B. Hua, M. Li, T. Zhang, C. Zhou, X. Li-Jost, and S.-M. Fei, ``Towards Grothendieck constants and LHV models in quantum mechanics,'' Journal of Physics A Mathematical General 48, 065302 (2015), arXiv:1501.05507 [quant-ph].

[24] S. Brierley, M. Navascues, and T. Vertesi, ``Convex separation from convex optimization for large-scale problems,'' ArXiv e-prints (2016), arXiv:1609.05011 [quant-ph].

[25] G. Pisier, ``Grothendieck's Theorem, past and present,'' Bull. Amer. Math. Soc. 49, 237-323 (2011), arXiv:1101.4195 [math.FA].

[26] F. Hirsch, M. T. Quintino, T. Vértesi, M. F. Pusey, and N. Brunner, ``Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States,'' Phys. Rev. Lett. 117, 190402 (2016), arXiv:1512.00262 [quant-ph].

[27] D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk, ``General Method for Constructing Local Hidden Variable Models for Entangled Quantum States,'' Phys. Rev. Lett. 117, 190401 (2016), arXiv:1512.00277 [quant-ph].

[28] S. R. Finch, Mathematical constants. Cambridge University Press, 2003. http:/​/​​catalogue/​catalogue.asp?isbn=0521818052.

[29] M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor, ``The Grothendieck constant is strictly smaller than Krivine's bound,'' Forum of Mathematics, Pi (2013), arXiv:1103.6161 [math.FA].

[30] E. G. Gilbert, ``An iterative procedure for computing the minimum of a quadratic form on a convex set,'' SIAM Journal on Control 4, 61-80 (1966).

[31] https:/​/​​s/​KG3m625.

[32] M. Oszmaniec, L. Guerini, P. Wittek, and A. Acín, ``Simulating positive-operator-valued measures with projective measurements,'' ArXiv e-prints (2016), arXiv:1609.06139 [quant-ph].

[33] G. Mauro D'Ariano, P. Lo Presti, and P. Perinotti, ``Classical randomness in quantum measurements,'' Journal of Physics A Mathematical General 38, 5979-5991 (2005), quant-ph/​0408115.