Self-testing in parallel with CHSH

Matthew McKague

Department of Electrical Engineering and Computer Science, Queensland University of Technology

Self-testing allows classical referees to verify the quantum behaviour of some untrusted devices. Recently we developed a framework for building large self-tests by repeating a smaller self-test many times in parallel. However, the framework did not apply to the CHSH test, which tests a maximally entangled pair of qubits. CHSH is the most well known and widely used test of this type. Here we extend the parallel self-testing framework to build parallel CHSH self-tests for any number of pairs of maximally entangled qubits. Our construction achieves an error bound which is polynomial in the number of tested qubit pairs.


► BibTeX data

► References

[BLM⁺09] Charles-Edwourd Bardyn, Timothy C. H. Liew, Serge Massar, Matthew McKague, and Valerio Scarani. Device-independent state estimation based on Bell's inequalities. Physical Review A (Atomic, Molecular, and Optical Physics), 80(6):062327, 2009. 10.1103/​PhysRevA.80.062327. arXiv:0907.2170.

[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23(15):880-884, Oct 1969. 10.1103/​PhysRevLett.23.880.

[Cir80] B. S. Cirel'son. Quantum generalizations of Bell's inequality. Letters in Mathematical Physics, 4(2):93-100, 03 1980. 10.1007/​BF00417500.

[Col16] Andrea W. Coladangelo. Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH. 2016. arXiv:1609.03687.

[CSUU08] Richard Cleve, William Slofstra, Falk Unger, and Sarvagya Upadhyay. Perfect parallel repetition theorem for quantum XOR proof systems. Computational Complexity, 17(2):282-299, 2008. 10.1007/​s00037-008-0250-4. arXiv:quant-ph/​0608146v2.

[HPDF15] Michal Hajdusek, Carlos A. Perez-Delgado, and Joseph F. Fitzsimons. Device-independent verifiable blind quantum computation. 2015. arXiv:1502.02563.

[McK13] Matthew McKague. Interactive proofs for BQP via self-tested graph states. Theory of Computing, 12(3):1-42, 2013. 10.4086/​toc.2016.v012a003. arxiv:1309.5675.

[McK16] Matthew McKague. Self-testing in parallel. New Journal of Physics, 18(4):045013, 2016. 10.1088/​1367-2630/​18/​4/​045013. arXiv:1511.04194.

[MMMO06] Frédéric Magniez, Dominic Mayers, Michele Mosca, and Harold Ollivier. Self-testing of quantum circuits. In M Bugliesi et al., editor, Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, number 4052 in Lecture Notes in Computer Science, pp. 72-83, 2006. 10.1007/​11786986_8. arXiv:quant-ph/​0512111v1.

[MS16] Carl A. Miller and Yaoyun Shi. Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices. J. ACM, 63(4):33:1-33:63, October 2016. 10.1145/​2885493. arXiv:1402.0489.

[MY04] Dominic Mayers and Andrew Yao. Self testing quantum apparatus. Quantum Information and Computation, 4(4):273-286, July 2004. arXiv:quant-ph/​0307205.

[MYS12] Matthew McKague, Tzyh Haur Yang, and Valerio Scarani. Robust self-testing of the singlet. Journal of Physics A: Mathematical and Theoretical, 45(45):455304, 2012. 10.1088/​1751-8113/​45/​45/​455304. arXiv:1203.2976.

[PR92] Sandu Popescu and Daniel Rohrlich. Which states violate Bell's inequality maximally? Physics Letters A, 169(6):411 - 414, 1992. 10.1016/​0375-9601(92)90819-8.

[RUV13] Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems. Nature, 496(7446):456-460, 04 2013. 10.1038/​nature12035.

[VV14] Umesh Vazirani and Thomas Vidick. Fully device-independent quantum key distribution. Physical review letters, 113(14):140501, 2014. 10.1103/​PhysRevLett.113.140501.

[WBMS16] Xingyao Wu, Jean-Daniel Bancal, Matthew McKague, and Valerio Scarani. Device-independent parallel self-testing of two singlets. Phys. Rev. A, 93:062121, Jun 2016. 10.1103/​PhysRevA.93.062121. arXiv:1512.02074.